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Abstract 

ABSTRACT 

Santosh D. Bhosale 

Serum Proteomics to Detect Early Changes in Type 1 Diabetes and Carotid Ath-
erosclerosis 

University of Turku, Faculty of Medicine, Department of Medical Microbiology and 
Immunology, Turku Doctoral Programme of Molecular Medicine (TuDMM), Turku 
Centre for Biotechnology, University of Turku and Åbo Akademi University 

Turku, Finland, 2018 

The detection of early markers is the key issue in predicting the outcome of in-
flammatory diseases such as type 1 diabetes and atherosclerosis. Whilst biochem-
ical testing approaches have improved prediction of inflammatory diseases, val-
idated biomarkers with better diagnostic specificities are still needed. Currently, 
majority of the disease-related proteomics studies have focused on their end-
points. The work presented in this thesis includes the first comprehensive 
proteomics analyses on serum samples collected from two unique Finnish longi-
tudinal cohorts, namely The Diabetes Prediction and Prevention Project (DIPP) 
and The Cardiovascular Risk in Young Finns Study (YFS), to identify early 
markers associated with type 1 diabetes and carotid atherosclerosis.  

Using mass spectrometry (MS)-based quantitative serum proteomics, profiling 
was carried out to the study temporal variation in pre-diabetic samples and early 
markers of plaque formation with the T1D and YFS cohorts, respectively. The 
analyses revealed consistent differences in the abundance of a number of proteins 
in subjects having an ongoing asymptomatic changes, several of which are func-
tionally relevant to the disease process. Taken together, the discovered markers are 
candidates for further validation studies in an independent cohorts and may be used 
to characterize an increased risk, progression and early onset of these diseases. 

 
 
 
 
 

Keywords: Serum, Proteomics, iTRAQ, Label-free quantification, T1D, Athero-
sclerosis, LC-MS/MS, SRM-MS 



Tiivistelmä 

TIIVISTELMÄ 

Santosh D. Bhosale 

Tyypin 1 diabeteksen ja ateroskleroosin kehittymiseen liittyvät varhaiset muutok-
set seerumiproteomissa 

Turun yliopisto, Lääketieteellinen tiedekunta, Lääketieteellinen mikrobiologia ja 
immunologia, Molekyylilääketieteen tohtoriohjelma, Turun biotekniikan keskus, 
Turun yliopisto ja Åbo akademi 

Annales Universitatis Turkuensis, Suomi, 2018 

Yksi keskeinen haaste tulehduksellisten sairauksien, kuten tyypin 1 diabeteksen ja 
ateroskleroosin, ennustamisessa on varhaisten tautimarkkerien löytäminen. Vaikka 
erilaiset biokemialliset testit ovat jo parantaneet tulehdusperäisten sairauksien en-
nustamista, uusia tarkempia biomarkkereita tarvitaan edelleen. Tästä huolimatta mo-
nissa näiden alojen proteomiikkatöissä on nykyisin keskitytty sairastumishetken tut-
kimiseen. Tämän väitöskirjatyön aikana olemme tehneet laajamittaiset prote-
omiikka-analyysit seeruminäytteille, jotka on kerätty osana kahta ainutlaatuista suo-
malaista seurantatutkimusta: DIPP-tutkimusta (tyypin 1 diabeteksen ennustaminen 
ja ennaltaehkäisy) ja YFS-tutkimusta (sydän- ja verisuonitautien riski nuorilla suo-
malaisilla). Näissä tutkimuksissa seerumiproteomiikkaa hyödynnettiin ensimmistä 
kertaa varhaisten tyypin 1 diabetes- ja ateroskleroosimarkkerien etsimiseen. 

Tutkimme tyypin 1 diabeteksen kehittymiseen ja ateroskleroottisten plakkien 
muodostumiseen liittyviä muutoksia seerumin proteomiprofiileissa massaspektro-
metriaan perustuvan kvantitatiivisen proteomiikan avulla. Nämä analyysit paljas-
tivat johdonmukaisia eroja lukuisissa proteiineissa myöhemmin sairastuneiden oi-
reettomien henkilöiden ja terveinä pysyneiden kontrollien välillä. Monet näistä 
proteiineista saattavat myös liittyä olennaisesti tautien kehittymiseen. Tutkimuk-
sissamme löydetyt markkerit tarjoavat lähtökohdan tuleville validointitutkimuk-
sille, ja niitä voitaisiin tulevaisuudessa käyttää yksilön kohonneen sairastumisris-
kin, taudin etenemisen sekä taudin varhaisen puhkeamisen kartoittamiseen. 

 
 
 

Avainsanat: Seerumi, proteomiikka, iTRAQ, Label-free kvantitointi, tyypin 1 
diabetes, ateroskleroosi, LC-MS/MS, SRM-MS 
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1 INTRODUCTION 

Inflammation can lead to increased cellular damage in diseases such as type 1 di-
abetes (T1D) and atherosclerosis (Donath et al, 2003; Libby, 2002). These inflam-
matory responses mediate their effects via circulation leading to infection and tis-
sue injury (Medzhitov, 2008). Identification of changes in tissue and bodily fluid 
samples, e.g. serum, could provide important insights and/or useful markers of 
these diseases. 

T1D is an autoimmune disease in which the immune system produces autoreactive 
T cells that can attack the insulin-secreting β cells in the islets of Langerhans of 
the pancreas, resulting in a progressive loss of insulin production (Van Belle et al, 
2011a; Sparre et al, 2005). The appearance of autoantibodies (Aab) towards islet-
cell proteins (ICA), protein tyrosine phosphatase (IA-2), glutamic acid decarbox-
ylase (GAD), insulin and zinc transporter Slc30A8 protein have been identified as 
manifestations of β cell autoimmunity and increased T1D risk (Zhang et al, 
2013b). However, the time from the appearance of first Aab to the onset of the 
clinical disease can vary from 1 month to over 10 years, moreover, not all Aab 
positive subjects develop T1D. Thus, additional indicators of the early disease pro-
cess and progression are needed.  

Atherosclerosis is a multifactorial disease that is characterized by selective reten-
tion of circulating apolipoprotein B particles in the subendothelial space by arterial 
wall proteoglycans (Williams & Tabas, 1995; Libby et al, 2002; Tabas et al, 2015). 
Myocardial infarction and stroke are the fatal end points of the disease. Notably, it 
has been documented that the atherosclerotic process starts in childhood and may 
remain symptomless for a long time (McGill H.C. et al, 2000). Identification of 
these early changes could provide new insights into the disease process and pre-
sents opportunities for an early intervention. Currently, ultrasonic examination of 
carotid artery intima-media thickness (IMT) is used as a pre-clinical assessment of 
atherosclerosis. However, the relationship between carotid plaque and IMT is still 
unclear, therefore additional biomarkers are required (Tonstad et al, 1996; Rundek 
et al, 2015). 

Globally, the prevalence of T1D and atherosclerosis have been steadily growing, 
leading to increased morbidity and mortality. It is, therefore, important to identify 
biomarkers for the diagnosis and prognosis of these disease states. With current 
technology, the determination of such markers requires the study of carefully se-
lected patient material and matched controls at a population level. To date, the 
biological sample of choice has been blood (plasma/serum), which has accordingly 
attracted much of attention as a source for biomarker discovery. Notably, it is read-
ily available and carries a potential archive of biological information endowed to 
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it due to its continuous perfusion through the body’s tissues (Rifai et al, 2006; 
Sparrow et al, 2011). This biological information is in the form of different cells, 
transcripts, proteins and metabolites, enabling the use of serum as a diagnostic 
specimen. With the maturation of mass spectrometry-based proteomics 
technologies, the scope for the qualitative and quantitative analysis of plasma/se-
rum proteins has grown in terms of both throughput and depth (Aebersold & Mann, 
2003, 2016; Geyer et al, 2017). 

In this Ph.D. project, quantitative proteomics approach has been used to identify 
early serum protein biomarkers associated with two inflammatory diseases, type 1 
diabetes, and carotid atherosclerosis. The project involved the proteomics meas-
urement of prospectively collected serum samples and the study of the temporal 
variation in the moderately abundant serum proteome. 
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2 REVIEW OF LITERATURE 

2.1 Introduction to proteomics: 

The word “proteomics” was coined more than 20 years ago in a similar way to 
genomics, with the original meaning indicating to the study of the total observable 
proteins in a biological system (Graves & Haystead, 2002; Cox & Mann, 2011; 
Wilkins et al, 1996). In both genomics and proteomics research, significant efforts 
have been devoted to the building of thorough catalogs of biological information 
e.g. human genome and proteome sequencing. (Consortium, 2001; Venter, 2001; 
Wilhelm et al, 2014; Kim et al, 2014). Today the classical definition of proteomics 
is no longer restricted to identification of gene products only, but has grown to 
encompass quantification, modifications, localization, protein-protein interactions, 
proteoforms, and structural description studies. (Yates et al, 2009a; Aebersold & 
Mann, 2016; Smith & Kelleher, 2013). The revolution in protein identification 
came with the development of tandem mass spectrometry for sequencing, which 
has enabled large-scale characterization of proteins (Aebersold & Mann, 2003; 
Hunt et al, 1986). The main lines of investigation in mass spectrometry (MS) based 
proteomics includes: protein identification, characterization of post-translational 
modifications (PTMs), protein-protein interaction and quantitative measurements 
of abundance changes. The information on quantitative protein expression levels 
(relative or absolute) is prerequisite, especially in clinical proteomics (Aebersold 
& Mann, 2003; Ong & Mann, 2005). A proteomics experiment can be roughly 
divided into four stages, 1) Proteomics sample preparation, 2) Separation of pro-
teins and peptides, 3) MS analysis and 4) Data analysis. These are considered as 
follows. 

2.2 Proteomics sample preparation: 

Proteins are functional molecules in the physiological system and are amongst the 
key interacting biomolecules in the complex network within the cell. There is not 
a single standard recipe for protein extraction and isolation that addresses all orga-
nelles and cellular subtypes, thus these require protocol optimization on an indi-
vidual basis. A number of factors are taken into account for protocol optimization, 
which include the nature of the sample (physicochemical properties, expression 
level and location of proteins), experimental goals and analytical strategy 
(Bodzon-Kulakowska et al, 2007). Cell pellets, tissues and biological fluids 
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(plasma/serum, cerebrospinal fluid, urine and saliva) are commonly used as a pro-
tein source. To denature and solubilize proteins a lysis buffer recipe made up off a 
mixture of detergents and chaotropes (urea and thiourea) are used (Zhang et al, 
2013c). The denatured proteins are then treated with reducing agents such as di-
thiothreitol (DTT) followed by alkylation with iodoacetamide (IAA) and finally 
overnight digestion with a suitable protease, e.g. trypsin (Switzar et al, 2013).   

2.3 Separation of proteins and peptides: 

Cellular lysates and biofluids mostly contain complex mixtures of thousands of 
proteins and their associated proteoforms in wide-ranging concentrations 
(Aebersold & Mann, 2016; Smith & Kelleher, 2013). Therefore, in order to exam-
ine such level of complexity various forms of sample separation are required. The 
choice of appropriate separation method is an important step while designing the 
proteomics experiment. The two major approaches widely used in proteomics are 
gel-based and chromatography-based methods. 

2.3.1 Gel-based methods:  

The use of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) has 
the long-standing history in the characterization of protein mixtures (Klose, 1975; 
Klose & Kobalz, 1995; O’Farrell, 1975). In the first dimension proteins are sepa-
rated by their isoelectric point (using an immobilized pH gradient), followed by 
separation according to their molecular mass in the second dimension. The com-
bination of this orthogonal separation enables the separation of thousands of pro-
teins/proteoforms in a single gel (Braun et al, 2007; Monteoliva & Albar, 2004). 
The separated proteins then can be visualized using Coomassie Brilliant Blue dye 
or silver staining. To enable the detection of proteins with PTMs, e.g. phosphopro-
teins and glycoproteins, Pro-Q Diamond and Pro-Q Emerald dyes were developed 
respectively. The separated proteins can then be identified after in-gel digestion 
with a suitable protease at the peptide level using matrix-assisted laser desorption 
ionization time of flight MS (MALDI-TOF-MS) or by liquid chromatography cou-
pled with MS (LC-MS) (Aebersold & Mann, 2003). Despite its advantages for 
straightforward visualization, 2D-PAGE is limited by laboriousness, lengthy pro-
tocols and reproducibility (López, 2007). These limitations have been circum-
vented by the introduction of fluorescent two-dimensional difference in-gel elec-
trophoresis (2D DIGE). By labeling the compared protein mixtures with distinct 
fluorescent dyes and separating these on a single 2D gel, this has drastically re-
duced problems of variation that are encountered with conventional 2 DE gels. 



 Review of literature 17 

Dedicated software, e.g. DeCyder, is used for protein spot detection, data normal-
ization and relative quantification (Gharbi et al, 2002; Unlu et al, 1997).  

In the context of work presented in this thesis, studies of serum proteomics by gel 
electrophoresis have not been widely applied due to their inability in detecting low 
abundant proteins, time-consuming protocols and limited throughput especially 
when viewed in terms of the large-scale clinical biomarker studies (Anderson & 
Anderson, 2002a; Rabilloud & Lelong, 2011).  

2.3.2 Chromatography-based methods 

Chromatography-based methods have most frequently been used to separate mix-
tures of enzymatically digested proteins. The workflow involves denaturation, re-
duction, alkylation of proteins and digestion with a trypsin. The resulting peptides 
are then analyzed with the LC-MS/MS to infer the identities of the proteins present. 
The scope of proteins identified in complex mixture can be improved by the intro-
duction of pre-fractionation approaches (Aebersold & Mann, 2016; Zhang et al, 
2013c). Optimally, this should be pursued by use of an orthogonal mode of separa-
tion, such that the peptides are separated on the basis of a different mode of interac-
tion. A popular non-gel based method amongst proteomics community has been 
multi-dimensional protein identification technology (MudPIT). The approach 
involves separation of the digested peptide by strong cation-exchange (SCX) in the 
first dimension and RP chromatography in the second dimension, followed by tan-
dem mass spectrometry (MS/MS) analysis (Link et al, 1999; Washburn et al, 2001). 
The first dimension can also be anion exchange (SAX) (Holland & Jorgenson, 
1995), a mixed bed (Motoyama et al, 2007), size exclusion (Wolters et al, 2001). 
MudPIT can be carried out either in manual (offline) or automated (online) modes.  

The principle of separation in an ion exchange chromatography is based on the net 
charge of the peptides. The SCX mode of separation uses a negatively charged ion 
exchange resin to capture positively charged analytes and vice versa in case of 
SAX fractionation. The elution of peptides is then achieved with increasing salt 
concentration or by altering the pH of a mobile phase. (Fournier et al, 2007).  

RP has been the most common mode of separation of peptides used in shotgun 
proteomics. With this mode of separation, the stationary phase is composed of a 
hydrophobic material, for example, C18 (Octadecyl silica) and the mobile phase is 
usually a mixture of water and an organic solvent such as acetonitrile along with 
formic acid. The peptides are separated based on the differences of their affinities 
between the stationary and mobile phase. The elution of the peptides is achieved 
by increasing the concentration of an organic solvent (Josic & Kovac, 2010). 
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Alternative methods have included the use of electrostatic repulsion-hydrophilic 
interaction chromatography (ERLIC). In this mode of separation, the analyte and 
stationary phase bear the same charge. Although this causes electrostatic repulsion, 
there is hydrophilic interaction of the analytes with stationary phase due to the 
organic solvent in the mobile phase (Alpert, 2008). The analytes are then eluted by 
altering the pH of mobile phase. 

2.4 Mass spectrometry in proteomics 

Mass spectrometry has progressed in the last two decades and made a significant 
contribution as an analytical platform in many areas, notably in biological sci-
ences. Proteomics, in particular, has advanced with the emergence of new MS 
techniques and improved instrumentation (Angel et al, 2012).  

The mass spectrometer constitutes of three basic components: 1) ion source, 2) 
mass analyzer and 3) detector.  

Briefly, in the ion source, ions are created in a fashion suitable for sampling, fol-
lowed by their separation in the mass analyzer and finally detection to amplify the 
signals, which may then be presented as a spectrum. The spectrum is a plot of mass 
to charge ratios (m/z) on x-axis versus relative intensities on y-axis (El-Aneed et 
al, 2009). 

2.4.1 Ionization methods: 

The prerequisite is that the analyte must be charged or ionized in the vapor state to 
enable its analysis by a mass spectrometer. The charged ions are then directed by 
magnetic and electrical fields of the MS. In proteomics research, soft ionization 
techniques, i.e. electrospray ionization (ESI) and matrix-assisted laser desorption 
ionization (MALDI), are commonly used because of their capability for analyzing 
large molecular weight analytes (Siuzdak, 2004). 

2.4.1.1 Electrospray ionization (ESI): 

Following the development of the concept of ESI by Malcolm Dole, John Fenn 
and colleagues pioneered the method to ionize biomolecules for MS (Fenn et al, 
1989). Briefly, the sample solution or chromatographic eluate is infused through 
an emitter into the ion source of the MS and a high potential difference (2-4 KV) 
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is applied to create a spray, which is then directed into the vacuum system. Here 
the droplets formed in the spray decrease in size (desolvation effect) due to the 
combined action of heat, vacuum and counter flow of gas. Following the subse-
quent coulombic explosion of the droplets, ions are transferred into the mass ana-
lyzer (Smith et al, 1991). Polypeptide ions are usually multiply charged. For tryptic 
peptides in positive ESI mode the ions are predominately doubly charged. This 
occurs since trypsin, cleaves the C terminus of arginine and lysine, resulting in 
peptides that have two sites available for protonation, i.e. N-terminus and a C-
terminus (Krusemark et al, 2009).  

2.4.1.2 Matrix-assisted laser desorption ionization (MALDI): 

The basis for the development of MALDI is credited to Franz Gillenkmap and 
Michael Karas who demonstrated that a sample embedded in a matrix that ab-
sorbed radiation from a laser would result in better ionization (Karas & 
Hillenkamp, 1988). In recognition for the utility of this approach, Koichi Tanaka, 
who was the first to utilize a laser shot to send large biomolecules to the gas phase, 
shared half of the 2002 Noble prize with John Fenn, awarded for their separate 
work on the development of soft ionization methods for mass spectrophotometric 
analyses of biological macromolecules.  

A sample is dissolved in an excess amount of matrix solution. The matrix is an 
organic compound, e.g. α-cyano-4-hydroxy cinnamic acid, 2, 5-dihydroxy benzoic 
acid or sinapinic acid, all containing delocalized pi bond electrons in the aromatic 
ring capable of absorbing laser UV energy. The analyte-matrix mixtures are sub-
sequently spotted onto a MALDI plate, followed by drying and co-crystallization. 
The MALDI plate is then inserted into the mass spectrometer and ablated with a 
laser, usually nitrogen at =337 nm. The matrix absorbs laser energy, which is 
subsequently transferred to an analyte that then undergoes desorption and ioniza-
tion. Unlike ESI, it produces mostly singly charged ions and is used for analysis 
of simple protein mixtures and intact protein analysis (Baldwin, 2005). A number 
of studies have combined LC with MALDI to characterize complex samples (Wall 
et al, 2002; Zhen et al, 2004). 

Another variant of MALDI is Surface enhanced laser desorption ionization 
(SELDI). Here the sample mixture is applied to a modified surface or chip that 
captures the peptides or proteins and the unbound components are washed away. 
A matrix solution is then spotted on the sample for co-crystallization followed by 
analysis with time-of-flight mass spectrometer (Poon, 2007).  
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2.4.2 Different types of mass analyzers: 

The mass analyzer is the heart of a mass spectrometer where ions are separated 
based on their m/z values. Different types of mass analyzers used in proteomics 
research include quadrupole (Q), linear ion trap (LIT), time of flight (TOF) and 
Orbitrap. These analyzers vary in terms of their size, mass range, mass accuracy 
and resolution. Many modern so-called hybrid MS platforms utilize the combina-
tion of at least two analyzers in one instrument (Yates et al, 2009b). In the work 
presented in this thesis quadrupole, time of flight, linear ion trap and Orbitrap an-
alyzers were used, and thus will be discussed below. 

2.4.2.1 Quadrupole analyzer: 

Four parallel rods with a circular cross-section are combined to create the quad-
rupole. Two of these rods are supplied with the direct current (DC) potential, 
while the other two with alternating radio frequency (RF) potential. Using an 
electrical field, ions from the ionization source are directed towards quadrupole. 
The trajectory of ions is controlled by a combination of constant DC and RF 
potentials applied to the rods. The positively charged ions will get attracted to-
wards negatively charged rods. However, upon changing the RF potential, ions 
will experience complex oscillations. With the appropriate values of a given set 
of parameters at any given time, only ions with a stable trajectory and a narrow 
m/z will survive the path. The other ions with unstable trajectories will eventu-
ally hit the rods. The ramping of these parameters results in the transmission of 
ions with different m/z towards the detector. (Dawson, 1986; El-Aneed et al, 
2009). 

2.4.2.2 Time of flight (TOF) 

As the name indicates, the principle measurement is the time required for the 
ions to traverse a known flight path, e.g. 1-2 m in length. Ions of the same charge 
that enter the analyzer at the same time have the same kinetic energy, however, 
the time it takes for them to reach the detector is directly proportional to their 
m/z ratios. Unlike in quadrupole where it is necessary to scan a range of frequen-
cies to ensure that ions are sampled, in TOF all ions reach the detector. The 
resolving power of TOF is improved when used in reflectron mode, where a 
constant electrostatic field is used to reflect the ion beam towards the detector, 
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effectively doubling the path length (Gelderman & Simak, 2008; El-Aneed et al, 
2009). Typically, a TOF instrument can achieve 20-40,000 resolution (Beck et 
al, 2015).  

2.4.2.3 Orbitrap mass analyzer: 

The Orbitrap consists of an inner (central) and an outer electrode that traps the ions 
based on the principle of orbital trapping in electrostatic fields (Kingdon, 1923). 
The ions attain harmonic oscillation as they rotate around the central electrode with 
a frequency characteristic for their m/z values. Using a Fourier transform, an image 
current of these oscillations is then converted to the frequency spectrum, in a man-
ner similar to the method used in Fourier transform ion cyclotron resonance 
(FTICR). The Orbitrap was invented and developed by Alexander Makarov 
(Makarov, 2000). The Orbitrap provides high resolving power (60-280,000), and 
mass accuracy, and has revolutionized the field of proteomics research 
(https://en.wikipedia.org/wiki/Orbitrap).  

2.4.2.4 Linear ion trap (LIT): 

A LIT consists of four hyperbolic rods that are arranged around a central axis. RF 
voltages are applied radially to the rods, creating a trapping field that confines ions 
in both x and y-axes. DC potentials are added to the end electrodes that confine an 
ion in the z-axis. Thus, the combined effects of RF and DC potentials aid in trap-
ping ions in all three dimensions. Linear ion traps or two dimensional (2-D) quad-
rupole ion traps have become a popular alternative to three-dimensional ion traps 
due to their higher ion storage capacities (Douglas et al, 2005; Schwartz et al, 
2002). 

2.4.3 Peptide fragmentation: 

The conventional approach for tandem mass spectrometry (MS/MS) based prote-
omic analysis has been to use so-called data dependent methods to select the most 
abundant ions for fragmentation based sequencing (see below). Intact peptide ions 
are distinguished on the basis of their m/z in the first mass analyzer (MS1), fol-
lowed by selection of the most intense ions (precursor ions) for dissociation in the 
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collision cell, usually by interaction with a neutral gas (e.g. helium). This fragmen-
tation primarily occurs on polypeptide backbone. Figure 1 A represents a sche-
matic of the tandem mass spectrometry mode and Figure 1 B depicts the nomen-
clature used to describe the fragmentation patterns. The most common ions formed 
as a result of cleavage of a peptide bond are the b- and y-types. Following cleavage, 
the charge can be retained on the fragment from the N terminus or C terminus, 
creating b- and y-type ions, respectively. The most common fragmentation tech-
nique used in shotgun proteomics analysis is collision-induced dissociation, (CID) 
(Cooks, 1995). In the third analyzer (MS2), the m/z of the charged fragments are 
recorded to provide a peptide fingerprint (Graves & Haystead, 2002; Steen & 
Mann, 2004; Zhang et al, 2013c). There are several other methods that can be used 
to fragment ions, resulting in different fragmentation types and characteristic ions. 
These methods include high-energy collisional dissociation (HCD) (Olsen et al, 
2007), and electron capture and transfer dissociation (ECD and ETD)(Zubarev et 
al, 1998; Syka et al, 2004). 

A 

 

B 

 
Figure 1: A) Schematic of the tandem mass spectrometry mode: ions are separated based 
on their m/z in MS1, followed by selection and fragmentation in collision cell and sepa-
ration of fragments in MS2 before reaching to the detector. Adapted and modified from 
(El-Aneed et al, 2009). B) Representation of a peptide structure and the nomenclature 
used to describe CID fragmentation patterns.  
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2.4.4 MS-based data acquisition strategies: 

Currently, the two most common MS-based approaches used for studying proteins 
are: “top-down” and “bottom-up” proteomics. The Top-Down approach involves 
analysis of the intact proteins and is not discussed in this thesis (Toby et al, 2016). 
“Bottom-up” proteomics is also referred to as shotgun proteomics (Zhang et al, 
2013c), whereby peptides from enzymatically digested proteins, are identified and 
quantified using LC-MS/MS (Aebersold & Mann, 2016). Most “bottom-up” ap-
proaches operate in 2D space to identify and quantify peptides, in the first dimen-
sion by defining the chromatographic retention using LC, followed by precursor 
ion’s m/z detection by MS in the second dimension. The approach can differ on 
the basis of the mode of selection and fragmentation of the precursors and the de-
tection of fragment ion signals. This leads to the classification of “bottom-up” pro-
teomics into data dependent, targeted and data independent methods as show in 
Figure 2. All of these approaches have been applied at all the different levels of 
the biomarker discovery pipeline (Sajic et al, 2015). 
 

 
 
Figure 2: A schematic representation of how peptides are selected, fragmented 
and analyzed in SRM, DDA and DIA mass spectrometry modes. 

2.4.4.1 Data-Dependent Acquisition (DDA) 

The DDA mode of data acquisition has been the most widely used in discovery-
based proteomics studies. The most abundant peptide precursor ions are selected 
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from the MS1 scan (survey scan), directed towards the collision cell for fragmen-
tation by CID and peptide fragment ions spectra, i.e. MS2 or MS/MS or tandem 
spectra are, recorded. The identity of the peptide and its associated protein is then 
interpolated by comparison with simulated MS2 spectra from an in-silico digested 
protein sequence database (Domon & Aebersold, 2010a). The selection of ‘n’ pre-
cursor ions (TopN) is based on various factors such as ionization and peptides 
abundance. The acquisition parameter specifying dynamic exclusion helps to pre-
vent the re-selection of same precursor ion in a given time frame, thus improving 
the scope for peptide identification. As this mode of acquisition relies upon on the 
fly selection of the most abundant peptides, it results in run to run stochasticity and 
leads to issues of missing values and questions on the reliability of peptide or pro-
tein identification. Typically, shotgun proteomic experiments do not require any 
prior knowledge of protein contents. (McDonald & Yates, 2002; Sajic et al, 2015). 

2.4.4.2 Targeted proteomics: 

The data acquisition mode traditionally used in targeted proteomics is selected or 
multiple reaction monitoring (SRM, MRM). Unlike DDA this requires the pre-
selection of the measured proteins/peptides ions. SRM complements the findings 
of shotgun proteomics with its unique capability in quantifying analytes reliably. 
It is considered as a gold standard method of proteome quantification for prede-
fined sets of proteins. Since the method is hypothesis-driven, it needs prior infor-
mation about the target proteins, their proteotypic peptides and transition lists cre-
ated from the precursor and fragment ion m/z values.  In SRM, a predefined pre-
cursor ion and its corresponding fragment ions are usually monitored on a triple 
quadrupole (QQQ) MS instrument. Specifically, the first (Q1) and third (Q3) quad-
rupoles acts as mass filters for the precursor and its selected fragment ions respec-
tively, whereas the second quadrupole functions as a collision cell. To validate a 
peptide target, a heavy synthetic equivalent of the corresponding peptide(s) includ-
ing an isotopically labeled, heavy lysine or arginine for tryptic peptides, should be 
incorporated into the analyzed samples. Precursor and fragment ions selection at 
two mass filters with narrower m/z window imparts high selectivity to an SRM 
assay (Lange et al, 2008; Domon & Aebersold, 2010a; Sajic et al, 2015). A sched-
uled SRM assay includes the monitoring of precursor/fragment ion pairs (transi-
tions) in combination with index retention time (iRT) peptides to establish reten-
tion time indices (Escher et al, 2012). Typically, many peptides are quantified in a 
single SRM experiment. Once the SRM chromatogram has been recorded, a data 
analysis pipeline, such as Skyline can be used to perform the peak detection and 
peptide quantification (MacLean et al, 2010a; Reiter et al, 2011).  
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The advent of newer MS instrumentation has revolutionized accurate mass meas-
urements and high-resolution capabilities, thus enabling the targeted proteomics to 
be carried out on a quadrupole-Orbitrap configuration instruments. In parallel re-
action monitoring (PRM) data acquisition, an Orbitrap replaces the Q3 quadrupole 
analyzer used in the analogous SRM configuration. The advantages of carrying out 
targeted proteomics on quadrupole-Orbitrap instruments over SRM include the se-
lectivity provided with the creation of full scan MS/MS for each target and no 
obligation for selecting the best transitions. (Gallien et al, 2012; Peterson et al, 
2012).   

2.4.4.3 Data Independent Acquisition (DIA): 

In DIA mode, the MS instrument fragments all precursor ions within a defined 
m/z range to generate multiplex MS2 spectra. The analysis is reiterated until the 
full m/z range is covered. Thus the continuous sequencing enables quantification 
with less missing values and without being restricted to the predefined selection 
of the ‘n’ most intense precursors of interest, like DDA (Chapman et al, 2013). 
However, the resulting MS/MS spectra become very complicated because of 
fragmentation of all peptides entering into MS in predefined m/z window, thus 
deconvolution of spectra is required. The latter has been reported as the greatest 
concern for the use of DIA, hence for the broader acceptance of DIA in routine 
practice, robust data analysis pipelines are required (Gillet et al, 2012a; Sajic et 
al, 2015).  

2.4.4.4 Data acquisition strategies and their impact:  

Ideally the data acquisition strategy selected should be capable of the quantifica-
tion of as many of proteins as needed across multiple samples with sufficient ac-
curacy (qualitative and quantitative), reproducibility and sensitivity (Domon & 
Aebersold, 2010b).  

DDA is the most popular approach in discovery based proteomics, although suffers 
from the limitations of reproducibility and missing values. With this mode, precur-
sor ions are monitored, followed by instrument driven dynamic selection of pre-
cursors for fragmentation and tandem mass spectra generation. Thus MS2 spectra 
are sampled discontinuously in the mass and time dimensions. However, due to 
the stochastic nature of the data acquisition, the reproducibility of both the quali-
tative and quantitative data influence the results of clinical biomarkers discovery 
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studies that involves the comparison of many samples (Hu et al, 2016). Neverthe-
less with modern fast scanning instruments, robust chromatographic systems and 
data analysis pipelines some of these problems can be alleviated.  

The major strengths of the SRM method stem from its targeted approach. A list of 
precursor ions can be isolated and fragmented to measure the intensity of selected 
fragments. This can be further scheduled across the chromatographic window to 
enable the sensitive detection of larger number of targets. In this way, SRM anal-
ysis can provide consistent and accurate quantification, although is limited in the 
number of targets that can be determined (Domon & Aebersold, 2010b; Lange et 
al, 2008). 

Following early approaches towards the multiplexed acquisition of tandem mass 
spectra (Gorshkov et al, 1998; Masselon et al, 2000), the term DIA was first intro-
duced by Venables et al. to describe a data acquisition method that was explicitly 
not data dependent, i.e. not stochastic like DDA (Venable et al, 2004). The DIA 
concept has been developed over the years since its introduction, including the 
implantation of several difference approaches such as MSE (Silva et al, 2005), PA-
cIFIC (Panchaud et al, 2009), AIF (Geiger et al, 2010) and SWATH (Chapman et 
al, 2013; Gillet et al, 2012a). In DIA, the instrument performs untargeted data ac-
quisition like DDA. The DIA process involves comprehensive sampling in MS2 
of the precursor space.  

The commercial introduction of SWATH (Sequential window acquisition of all 
theoretical fragment ion spectra), heralded a new era of DIA method combining 
the strengths of both discovery and targeted approaches i.e. it can provide compre-
hensive record of the proteins mixture reproducibly with quantitative accuracy. 
Using wide precursor isolation windows, all precursors falling within the wide pre-
cursor isolation windows are selected, fragmented and multiplexed tandem mass 
spectra are recorded sequentially until the desired m/z range is covered (e.g. 400-
1200 m/z range with 25 Da windows). Thus continuous MS/MS signals are ac-
quired in the time and m/z dimensions, resulting in complex mixed MS2 spectra 
(Gillet et al, 2012b). In effect SWATH, provides a near complete digital record of 
each biological sample, i.e. every peptide will be fragmented and their ion spec-
trum is acquired which can be compared and re-interpreted on the basis of future 
knowledge (Guo et al, 2015).  

As discussed, the tool box for mass spectrometry-based proteomics now provides 
a range of data acquisition approaches with their individual strengths and weak-
nesses. For the bulk of the work presented in this thesis a DDA workflow was 
selected, since, at the time of this study, the approach provided a scalable, repro-
ducible method with a sufficiently matured data analysis pipeline and was suitable 
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for the available instrumentation. Subsequent validation measurements were made 
using SRM. 

2.4.5 Spectral identifications and database search engines: 

The commonly used methodologies for protein identification are 1) peptide mass 
fingerprinting 2) peptide fragment fingerprinting and 3) de novo sequencing. 
 

1) Peptide mass fingerprinting (PMF): Proteolytic digestion of proteins 
with a specific protease results in generation of a series of peptides 
with predictable masses. The simultaneous determination of these 
masses by MS analysis creates a mass fingerprint unique to a partic-
ular protein. To identify a protein after MS analysis, proteins from a 
sequence database are in silico digested to produce theoretical 
masses, which are then compared with the observed masses to estab-
lish a possible identity. The reliability of protein identification de-
pends upon the probability of matching between observed and theo-
retical masses (Pappin et al, 1993; James et al, 1993) 
 

2) Peptide fragment fingerprinting (PFF): PFF is currently the main ap-
proach in identification of proteins in high throughput manner. Pro-
teins are digested into peptides with a specific protease, e.g trypsin. 
The digested peptides are analyzed by MS where the peptides are 
fragmented to produce PFF. Information from both the precursor ion 
and its fragment ions masses are used in searching the protein se-
quence database. The identification of proteins from this type of 
search is based on scoring systems that determine the probability of 
the best-matched candidate versus the other alternatives (McHugh & 
Arthur, 2008). SEQUEST (Eng et al, 1994), Mascot (Perkins et al, 
1999) and Andromeda (Cox et al, 2011b) have been the most widely 
used search engines for protein identification.  

 
3) De novo sequencing: This strategy is used when there is insufficient 

information about the proteome of an organism studied. With this ap-
proach, information is deduced from the experimental tandem 
(MS/MS) spectra of a peptide without the use of a sequence database. 
Making use of the characteristic patterns of y and b ion series from 
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tryptic peptides and the mass differences between different combina-
tions of amino acids, the peptides sequence can be derived. Prior to 
the development of database search engines this was the principle 
method of MS based peptide identification (Shevchenko et al, 2002; 
Taylor & Johnson, 1997; Ma et al, 2003).  The interpretation can  
be conducted in both manual and automated ways. PEAKS 
(http://www.bioinfor.com/) and Lutefisk (https://omictools.com/ 
lutefisk-tool) are examples of commercial and free software packages 
used for de novo sequencing, respectively.  

2.4.6 Quantitative proteomics: 

Many first-generation proteomics studies focused on enumerating the proteins pre-
sent in the biological system studied. With today’s technology, it has become pos-
sible to provide both quantitative and qualitative data in a relatively high through-
put manner. This shift was substantially driven by the advent of MS instrumenta-
tion and related sample preparation, chromatographic separation and data pro-
cessing methods (Aebersold & Mann, 2016; Bantscheff et al, 2012).  

Quantitative proteomics data is prerequisite to address many biological and clini-
cal questions. Quantitative proteomics can be either absolute or relative. Absolute 
quantification measures the absolute protein content in a given sample, e.g. the 
concentration of a protein or number of its copies per cell. Relative quantification 
measures the relative abundance of a protein between two or more samples 
(Nikolov et al, 2012). The quantification approaches used in mass spectrometry-
based proteomics can be divided into two categories, label-based and label-free 
quantification (Bantscheff et al, 2007). The work presented in this thesis involved 
the use of both label-based and label-free relative quantification, as are discussed 
in the following sections. 

2.4.6.1 Label-based quantification: 

This method usually involves chemical or metabolic labeling of peptides and pro-
teins, which introduces a specific mass tag, enabling the different forms to be dis-
tinguished by MS and providing a means of quantification (Bantscheff et al, 2012; 
Strassberger et al, 2010). Common examples of chemical and metabolic labeling 
approaches are included in Table 1. 
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Table 1. The commonly used labeling methods in proteomics 

Labelling technique 
Chemical: 

 Isotope-coded affinity tags (ICAT) (Gygi et al, 1999a) 
 Isobaric tags for relative and absolute quantification (iTRAQ) (Ross et al, 

2004b) 
 Tandem mass tag (TMT) (Thompson et al, 2003a) 

Metabolic: 
 Stable isotope labeling with amino acids in cell culture (SILAC) (Ong et al, 

2002) 

Chemical labelling: The reactive group of proteins and peptides are modified us-
ing stable isotope labels. The example includes ICAT, iTRAQ and TMT. 

The original structure of ICAT reagent chemically consists of three elements (Fig-
ure 3), 1) A thiol reactive group to bind with cysteine containing amino acids in 
proteins, 2) a linker (heavy or light) to generate characteristics stable isotope sig-
nature and 3) a biotin tag to affinity purify the ICAT labelled peptides using avidin.  

 

Figure 3. Chemical structure of ICAT reagent. The reagent combines biotin, a 
linker and a thiol reactive group. X = hydrogen (light) or deuterium (heavy). 

For quantitative comparison between two conditions, one of the sample is labelled 
with light form of the reagent and other sample is labelled with heavy linker. After 
labelling, the samples are mixed, digested with trypsin followed by avidin affinity 
purification of ICAT labelled peptides. These peptides are then further analyzed 
using LC-MS/MS and quantitative information is then extracted from ratios of dif-
ferentially labelled tags (Gygi et al, 1999b). However, the usefulness of ICAT re-
agents in clinical biomarker discovery project is limited due to its restricted multi-
plexing capacity and inability to label non-cysteine containing residues in proteins.  

In the work presented in this thesis, iTRAQ reagents have been used. iTRAQ is a 
chemical labeling method which inserts a stable isobaric mass tag at the peptide 
N-terminus and the epsilon-amino group of lysine residues (Ross et al, 2004a). 
The iTRAQ reagent was commercialized by AB Sciex and is available as 4-plex 
and 8-plex kits. These can be used to provide quantitative information from four 
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up to eight different biological conditions. The structure of the iTRAQ reagent 
consists of three components: a reporter group, a balance group and a peptide re-
active group (N-hydroxysuccinimide), as shown in the Figure 4. Using different 
combinations of carbon, nitrogen and oxygen isotopes the distinct isobaric forms 
of the reagent and components are formed.  The reporter ion masses for 4-plex are 
detected at m/z 114-117, with the balance group mass ranging from 28-31 Da. 
Likewise, the reporter ion masses for the 8-plex reagents are detected at m/z 113-
119 and 121 with the balance group’s mass ranging from 24-31 Da. AB Sciex 
chose not to create a reagent form where a reporter ion 120 was used because phe-
nylalanine immonium ion is detected at m/z 120.08 (Rauniyar & Yates, 2014). The 
4-plex or 8-plex iTRAQ reagents have isobaric masses of 145 or 305 Da, respec-
tively (Beck et al, 2012).  

 
Figure 4. Chemical structure of A) 4-plex iTRAQ reagents and B) 8-plex iTRAQ rea-
gents. The molecule consists of a reporter group (N-methylpiperazine), a balance group 
(carbonyl) and an amine specific peptides reactive group (NHS). 

Peptides from the samples to be studied are first labelled with different forms of 
the iTRAQ reagents. Thereafter, the samples are pooled. For most comparisons, it 
is important to reduce the complexity by some form of fractionation (orthogonal). 
This enables an increased scope for detection of the lower abundant proteins and 
reduces the influence of chimeric spectra on the quantification. SCX fractionation 
has been a popular and vendor recommended method. Basic pH reversed-phase 
fractionation has emerged as a favorable alternative. The fractions are then ana-
lyzed with LC-MS or MALDI system. The labeled peptides exhibit same physico-
chemical properties and during chromatographic separation co-elute as a single 
precursor in the MS1 scan. Upon fragmentation, MS/MS gives information for the 
peptide/proteins identification and at the lower m/z value the quantitative infor-
mation can be interpolated from the reporter group ion intensities (Moulder et al, 
2017a; Rauniyar & Yates, 2014).  

The labelling of proteins by iTRAQ had been demonstrated (Wiese et al, 2007), 
although the approach is limited since the labeling of lysine affects the efficiency 
of trypsin digestion.  
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Analogous to iTRAQ labelling, tandem mass tags (TMT) are used to label the pep-
tides or proteins for MS based quantification. TMT reagents are available for du-
plex, sixplex and 10plex comparisons. The concept of TMT tags was first de-
scribed by Thompson et al. prior to the introduction of iTRAQ (Thompson et al, 
2003b) and later commercialized by Thermo Scientific.  

Metabolic labelling: The SILAC technique has been a popular method for the 
quantitative proteomics analysis of cell cultures due to its accuracy and robustness. 
It has been applied for example to study cell signaling, PTMs such as phosphory-
lation, secretomes and protein interactomics. Typically cell populations are grown 
in culture media containing isotopically distinct amino acids. For binary compari-
sons, one of the cell population is cultured in growth media containing naturally 
occurring amino acids, whilst the other is in media containing heavy counterpart 
of natural amino acids. e.g., arginine and lysine labelled with 13C and 15N. Finally, 
the two cell populations are combined, processed, analyzed by LC-MS/MS and 
can be differentiated based on their differences in mass of stable isotope composi-
tion. However the technique is unsuitable for analyzing the body fluid samples 
(Ong et al, 2002; Iliuk et al, 2009).  

In the work presented in this thesis, the iTRAQ labelling strategy was adopted to 
detect early changes in the serum proteome of T1D developing children because 
of its robustness and multiplexing capabilities. 

2.4.6.2 Label-free quantification (LFQ): 

There are two principal approaches to protein Label-free quantification 1) By 
counting the number of MS/MS events assigned to peptides of a particular protein, 
named as spectral counting, and 2) based on the measurement of the signal inten-
sity of the mass spectrometric chromatographic peak of a peptide belonging to a 
specific protein (Bantscheff et al, 2007). LFQ approaches are applicable to any 
sample type, provided that the sample preparation and analytical workflow is re-
producible. Moreover, these approaches do not need any labeling strategy, alt-
hough the data-processing pipeline (e.g. Normalization, retention time alignment, 
feature detection, feature quantification, feature matching and statistical analysis) 
is of utmost importance (Mueller et al, 2008). 
 

1) Spectral counting based LFQ: The basis for this form of relative 
protein quantification is that the frequency and number of MS/MS 
identified for a particular protein can be correlated with its abun-
dance. Thus, a protein with an increased abundance will have a 
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larger number of unique peptides identified and a higher MS/MS 
count (Zhu et al, 2010; Zhang et al, 2013c; Bantscheff et al, 
2012). The LFQ calculation to estimate the protein abundance is 
performed by computing a protein abundance index (PAI), which 
is defined as the number of identified peptides divided by the 
number of theoretically observed tryptic peptides for a particular 
protein. Although convenient and fast, the LFQ strategy suffers 
from a number of drawbacks. The main limitation is the quality 
of MS/MS spectra, as errors in assigning peptides directly affect 
the protein quantification. The PAI of high abundant proteins can 
be calculated with greater accuracy, however, for low abundant 
proteins, it becomes unreliable. Another important pitfall that is 
common with other quantification methods is that how to consider 
spectral counts for peptides shared between proteins ((Strass-
berger et al, 2010; Zhang et al, 2013c). To overcome this, a num-
ber of methods have been implemented, including the exponen-
tially modified PAI (emPAI) (Ishihama et al, 2005), normalized 
spectral abundance factor (NSAF) (Zybailov et al, 2006) and ab-
solute protein expression (APEX) (Braisted et al, 2008).   

 
2) Signal intensity based LFQ: In an LC-MS run peptides elute within 

a particular time window that is recorded by its changing intensity 
at a particular m/z (Zhu et al, 2010). The computation of LFQ in-
tensities involves extraction of ion chromatogram for each peptide 
and integration of their mass spectrometric signals in chromato-
graphic time scale across the LC-MS runs (Strassberger et al, 2010). 
Relative LFQ information is then obtained by comparing the inten-
sity of a peptide/protein from one run with its respective feature 
from other runs (Bantscheff et al, 2007). However, a number of fac-
tors must be taken into account. These include the following: 

 The use of high-resolution MS is important to reduce co-
eluting peptides interference, 

 The chromatographic separation reproducibility is the key 
element in controlling the drift in retention time of corre-
sponding peptides across many LC-MS runs, 

 The MS sensitivity should remain constant between suc-
cessive sample analyses, 

 A sufficient number of MS scans are recorded across the 
chromatographic peak.  



 Review of literature 33 

Finding the right balance between the number of MS1 and MS2 scans for signal 
based quantification, and the protein identification rate is imperative. The issues 
such as retention time alignment and mass calibration have been addressed by nu-
merous computational methods (Strassberger et al, 2010; Zhang et al, 2013c). 

In the work presented in this thesis the label free quantification approach was se-
lected in as a subsequent method to the iTRAQ labelling approach employed to 
monitor the early changes in serum proteome of children en route to T1D. The 
change of strategy was due to its ease of implementation, the matured data analysis 
pipeline, complementary information, scalability and cost effectiveness.    

2.4.7 Bioinformatics and data analysis: 

Computational methods and bioinformatics have been a central component for 
generating useful biological information from proteomics experiments. Starting 
from the first automated peptides sequencing algorithms, it has become increas-
ingly necessary to combine the qualitative and quantitative data from larger and 
larger data sets (Nesvizhskii, 2010). Both commercial and open source software 
has been developed with increasing capabilities. For example, ProteinPilotTM was 
developed by ABSciex for processing iTRAQ data, including the novel Paragon 
search algorithm (Shilov et al, 2007a) and tools for the quantification (used in 
analysis of iTRAQ data presented in this thesis). The transproteomic pipeline pro-
ject was initiated as an open source tool to provide a suite of tools for processing 
data irrespective of the initial data format (i.e. vendor independent) (Kohlbacher 
et al, 2007). The latter was created with the view to use a generic data format and 
further enable data sharing and archiving. A range of similar and related tools have 
emerged in recent years, including, for example, Galaxy (Goecks et al, 2010), Pro-
genesis (Dakna et al, 2009) developed by Nonlinear Dynamics and MaxQuant 
(Cox & Mann, 2008a). The latter two were used to process the label free data an-
alyzed in the work presented in this thesis, especially MaxQuant has been widely 
adopted due to its speed and efficacy (freeware). MaxQuant was developed with 
the stand alone Andromeda search algorithm (Cox et al, 2011a) and a downstream 
data processing package, Perseus (Tyanova et al, 2016). Perseus, in particular, en-
ables quick execution of a range of data processing functions including normali-
zation, quality checking, statistical testing and functional annotation.  

Downstream of qualitative and quantitative proteomics, additional bioinformatics 
tools are often used for functional enrichment analysis. In the work presented in 
this thesis, The Database for Annotation, Visualization and Integrated Discovery 
(DAVID) (Jr et al, 2003). 



34 Review of literature 

Furthermore commercial softwares are available for analyzing SRM data, such as 
Multiquant (AB Sciex) and Pinpoint (Thermo Scientific) (Colangelo et al, 2013), 
as well as open source platforms e.g. Skyline (MacLean et al, 2010a). The latter 
freeware was used for analyzing SRM data presented in this thesis with statistical 
analysis utilizing the in-built MSstats application (Choi et al, 2014).  

2.4.8 Quantitative proteomics for plasma/serum biomarker discovery: 

In the field of medicine, the clinical chemistry of proteins has achieved significant 
importance. Currently, protein specific measurements are used to assist in the 
diagnosis of a number conditions, as indicated in the following examples:  
 

 Prediction of a disease risk, e.g in coronary disease, C-reactive pro-
tein (CRP)1 levels increase,  

 Diagnosis of acute events, e.g. after myocardial infarction, detection 
of cardiac troponin 

 Detection of disease reoccurrence, e.g. detection of thyroglobulin af-
ter removal of the thyroid gland in metastatic thyroid cancer. 

These predictive measures have increased the hope for clinical diagnostics using 
proteins for many disease manifestations, leading to significant attention towards 
novel biomarkers discovery (Anderson, 2010).   

The term biomarkers refers to measurable biological molecules that define the 
healthy and diseased condition. Significant efforts have been devoted towards the 
use of omics technologies (genomics, transcriptomics, proteomics and metabolom-
ics) for the discovery of new biomarkers. Protein markers, in particular, can be seen 
as informative and suitable, because of their functionality and accessibility by less 
invasive methods. (Lyons & Basu, 2012; Sajic et al, 2015).  Established protein bi-
omarkers are typically measured by an enzyme-linked immunosorbent assay 
(ELISA) in body fluids, such as blood or urine or cerebrospinal fluid, to provide 
indications of the subclinical or clinical status of the disease or for monitoring the 
treatment response. For protein biomarker discovery, MS-based proteomics holds 
an influential role in biomedical research (Parker et al, 2010; Geyer et al, 2017). 

2.4.8.1 Plasma/serum proteomics and challenges associated with biomarker 
discovery: 

Since the end-point of the biomarker discovery process is typically the develop-
ment of a classical blood test, blood, plasma or serum are the obvious choices of 
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biofluids for biomarker discovery (Rifai et al, 2006). Serum, the liquid portion of 
blood that is devoid of clotting factors. Plasma, the liquid of portion of blood that 
is pale yellow in color and holds the blood cells in suspension (Kwasnik et al, 
2016). Serum is used as a general term for plasma and serum throughout this the-
sis, although the appropriate form is specified when referring to cited literature. 

Serum proteomics has attracted a great deal of attention as a potential source of 
biomarker discovery. Serum is easily accessible and carries a potential archive of 
biological information that is endowed due to its continuous perfusion through the 
body’s tissues (Issaq et al, 2007). Blood is a rich source of proteins, encompassing 
not only the proteins from plasma-based functionality and blood cells but poten-
tially all other human proteins in miniscule amounts. Thus specific disease may be 
characterized by serum “signatures” (Schenk et al, 2008).  

Although serum is routinely used as a specimen in clinical laboratories, it poses 
significant challenges for proteomics biomarker discovery due to its high dynamic 
range (spanning over ten orders of magnitude), which can limit the detection of 
clinically relevant markers (Geyer et al, 2017; Anderson & Anderson, 2002b). The 
inherent wide range of protein abundance for the plasma/serum proteome is repre-
sented in the Figure 5.  

 
Figure 5: The inherent wide range of protein abundance in the plasma/serum proteome. 
ALB: Serum albumin and IL6: Interleukin-6.  
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Figure 5 depicts the log scale abundance of major proteins clinically measured in 
plasma. These span over >10 orders of magnitude, ranging from albumin at the 
top, down to, for example, interleukin-6 (IL6) at the bottom. At the upper end of 
the spectrum are the classical serum proteins, in the middle are the tissue leakage 
proteins and at the lower extremes signaling proteins and cytokines. Thus, through-
out the entire spectrum clinically useful proteins are situated (Anderson & 
Anderson, 2002b).   

The classical plasma protein region is dominated by high abundant proteins in-
cluding albumin, immunoglobulins, complement proteins, apolipoproteins and 
peptidases.  

Albumin (molecular mass of ~65 kDa), is the most abundant protein and is present 
at concentrations ranging from 35-50 mg/ml. It acts as a carrier protein in blood 
serum, and a large number of compounds, such as lipoproteins, cytokines, hor-
mones, peptides and amino acids bind to it (Adkins et al, 2002).  

Immunoglobulins or antibodies, are highly abundant in serum, function by identi-
fying the antigens and initiating an immune response (Adkins et al, 2002).  

The complement system’s armamentarium comprises of about 35 proteins in se-
rum and tissue fluids. When activated their cascade eradicates bacteria and viruses 
by interacting with antigen-antibody (Ag-Ab) complexes, cell membranes and 
other complement protein (Burtis, A et al, 2001).  

The synthesis of lipids occurs in the liver and intestines and they exist in plasma 
as a macromolcular complexes called lipoproteins. They are categorized as 1) chy-
lomicrons, 2) very-low-density lipoprotein (VLDL), 3) low-density lipoprotein 
(LDL), 4) high-density lipoprotein (HDL). The protein components of lipoproteins 
are called as apolipoproteins. The major forms of these are as follow. 

Apolipoprotein A-I (APOA1), Apolipoprotein A-II (APOA2), Apolipoprotein A-
IV (APOA4), Apolipoprotein B-100 (APOB), Apolipoprotein C-I (APOC1), 
Apolipoprotein C-II (APOC2), Apolipoprotein C-III (APOC3), Apolipoprotein C-
IV (APOC4), Apolipoprotein E (APOE) and Apo (a). 

The apolipoproteins proportion varies for each class of lipoproteins for e.g. APO 
A1 and APOB are the major components of HDL and LDL, respectively. APOC1, 
2, 3 and APOE are present in different proportions on all lipoproteins (Burtis, A et 
al, 2001; Mahley et al, 1984).   

From the perspective of proteomics analysis, the highly abundant proteins in serum 
repress the detection of lower abundant and potentially clinically useful proteins, 
i.e. potential biomarkers. In order to improve the coverage of the lower abundant 
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proteins a plausible strategy is to remove the highly abundant proteins (Bellei et 
al, 2011). The strategies for removing the most abundant proteins have included 
such methods as targeted immuno-affinity depletion, combinatorial libraries and 
precipitation (Tu et al, 2010; Dwivedi et al, 2010). Improvements in MS-based 
proteomics technologies have maintained the interest in plasma/serum proteomics 
(Cox & Mann, 2011; Aebersold & Mann, 2016; Muñoz & Heck, 2014). These 
advances in combination with the immunodepletion of highly abundant proteins 
and extensive peptide fractionation methods, has expanded the lists of identified 
proteins to several thousands (Addona et al, 2011; Cao et al, 2013) and in some 
studies even greater than 5000 (Keshishian et al, 2015, 2017). Nevertheless, these 
strategies increase the number of preparative steps and may potentially bias the 
obtained results (Adkins et al, 2002; Geyer et al, 2016b). The analyses of serum 
without depletion of the major components has recently been demonstrated in sev-
eral large-scale studies, demonstrating the potential utility of this strategy. Liu et 
al. compared the plasma of identical twins (Liu et al, 2015), and more recently 
Geyer and co-workers demonstrated how the analysis of undepleted serum could 
be conducted with moderately high throughput as means to provide an overview 
of a person's health state (Geyer et al, 2016b, 2016a). Nevertheless, despite the 
progress made in serum proteomics studies in recent years, many studies are lim-
ited to the comparison of a few hundreds of proteins.  

2.5 An introduction to type 1 diabetes (T1D): 

Type 1 Diabetes (T1D) is an autoimmune disease caused by the complex interplay 
between genes and environmental factors that precipitate in genetically susceptible 
individuals. The body’s own immune system attacks the insulin-secreting β cells 
in the islets of Langerhans in the pancreas, resulting in a progressive loss of insulin 
response. T1D is the most common endocrine and metabolic disorder occuring in 
children, though somewhat more common in boys than girls (Tuomilehto et al, 
1998; Ostman et al, 2008). The occurrence rate varies amongst countries, with the 
highest incidence in Finland, where it has peaked at about 50-60 per 100,000 chil-
dren. The clinical onset of T1D is typically preceded by an asymptomatic period 
that can last for few months or even years (Purohit & She, 2008; Knip et al, 2005; 
Harjutsalo et al, 2013). 

2.5.1 Genetic predisposition and the environmental determinants: 

The human leukocyte antigen (HLA) region on chromosome 6p21 has been 
predominantly associated with T1D susceptibility. The region is commonly 



38 Review of literature 

referred to as the insulin-dependent diabetes mellitus locus (IDDM1), and is 
associated with susceptibility for several other autoimmune diseases (Nerup et al, 
1974; Singal & Blajchman, 1973). Out of all the HLA types, class II has the 
strongest association with T1D, where haplotypes DRB1, DQB1 confer 
susceptibility and DQA1 confers disease resistance (Erlich et al, 2008). Many other 
genetic factors have been associated with T1D, of which INS and PTPN22 are 
important (Polychronakos & Li, 2011).  

In addition, a number of non-genetic, environmental factors have been suspected 
to act as triggers, for example, early diet, hygiene and infections may play an 
important role in the etiology of T1D. Investigated dietary factors have included 
cow’s milk and vitamin D. These are considered as follows. 
 

 Cow’s milk: The studies depicting the relationship between consump-
tion of cow’s milk and islet autoimmunity of T1D have contradictory 
results. Wahlberg et al. and Virtanen et al. have shown that cow’s milk 
consumption has been associated with islet autoimmunity (Wahlberg et 
al, 2006; Virtanen et al, 2012) and T1D (Virtanen et al, 2000) while 
others observed not influence at all (Knip et al, 2018).  

 Vitamin D: This fat-soluble secosteroid actively regulates the immune 
system and metabolic pathways relevant to diabetes, thus potentially of-
fering a protective role. In addition to the diet, skin also produces vita-
min D upon exposure to sunlight (Penckofer et al, 2008). The incident 
rate of T1D varies from spring to autumn and winter seasons, e.g. in 
autumn and winter many cases are diagnosed, suggesting the importance 
of vitamin D. However, there are mixed results with some studies sug-
gesting the role of vitamin D in reducing the onset of T1D and others 
indicating it has no effect (Weets et al, 2004; Dong et al, 2013; IM et al, 
2012; Miettinen et al, 2012). Overall, there is little evidence to support 
the use of vitamin D as a diet supplement in order to prevent the onset 
of islet autoimmunity and subsequent T1D (Zipitis & Akobeng, 2008; 
Simpson et al, 2011; Bizzarri et al, 2010; Walter et al, 2010).   

 Hygiene hypothesis: This postulates that because of improved hygiene 
and sanitation, the reduced frequency of childhood infections is 
associated with the increased incidence of autoimmune diseases (Rewers 
& Ludvigsson, 2016; Knip & Simell, 2011). It is believed that, it is due 
to the lack of challenges during the maturation of the immune system.  

 Infections: A number of studies have drawn attention towards the role 
of viruses in the progression to T1D. Amongst these, the strongest 
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evidence has been found for enteroviruses (EVs) in both animal and hu-
man studies, in particular, the Coxsackie B virus strain (Filippi & von 
Herrath, 2008). The first report indicating the role of this virus infection 
in T1D has shown the presence of elevated neutralizing antibody titers 
in serum, with comparisons made between healthy controls and recently 
diagnosed patients  (Gamble et al, 1969). EVs have been observed to 
exhibit a tropism to human pancreatic β cells in vitro and in vivo 
(Ylipaasto et al, 2004; Bennett Jenson et al, 1980). In the study of de-
ceased twins that progressed to T1D quite early in life (aged 14 months), 
the presence of enterovirus RNA was detected (Smith et al, 1998). The 
postmortem biopsies revealed the presence of enteroviruses in their pan-
creatic islets. Some studies have also reported the increased T-cell 
response against enterovirus antigens in T1D patients, as well as auto-
antibody (Aab) positive prediabetic children (Varela-Calvino et al, 
2002; Juhela et al, 2000). Krogvold et. al. have identified the presence 
of EVs in the pancreatic islets of the living recently diagnosed T1D pa-
tients (Krogvold et al, 2015). The current paradigm is that EV infection 
first affects the islets of the pancreas, resulting in an inflammatory 
response. In the susceptible individuals, the EVs undergo replication in 
the β cells producing viral RNA and proteins, resulting in innate immune 
response, inflammation and autoimmunity (Hyöty, 2016).   

2.5.2 Pancreatic pathology: 

The β cells are situated in the islets of Langerhans of the pancreas. They store and 
release insulin and constitute about 65-80% of the cells in pancreatic islets. Insulin 
is a hormone required for blood glucose homeostasis. For many years it was 
thought that the immune system is the culprit for T1D (Van Belle et al, 2011b). 
However, several researchers conceptualized that beta cells are actively involved 
in their own destruction, and although the exact mechanism is not yet known, this 
remains a widely accepted hypothesis. The process initiates with the release of 
autoantigens from beta cells due to cellular damage, metabolic stress or viral in-
fections. As a result, dendritic cells and macrophages (antigen presenting cells), 
then infiltrate into islets of Langerhans of the pancreas and presents autoantigens 
to T-helper cells. Naïve CD4+ T cells from blood and pancreatic lymphoid nodes 
recognize the major histocompatibility complexes (MHC) and beta cell-derived 
peptides presented by innate (macrophages) and adaptive (dendritic) immune cells 
in the islets. The interleukin (IL)-12 secreted from macrophages and dendritic cells 
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activate these CD4+ T cells, in turn activates CD8+ T cells, which then are in-
volved in beta cells destruction. (Yoon & Jun, 2005; Crèvecoeur et al, 2015, 2017; 
Moulder et al, 2017b). 

2.5.3 The need to identify novel risk factors and prospective sampling: 

The pathogenesis of T1D remains unknown. The appearance of a number of auto-
antigens, including islet-cell autoantibodies (ICA), insulin autoantibodies (IAA), 
protein tyrosine phosphatase (IA-2), glutamic acid decarboxylase (GAD), insulin 
and zinc transporter SlC30A8 protein, have been found to indicate the initiation of 
β cell autoimmunity and an increased T1D risk (Zhang et al, 2013b). The detection 
of high levels of any of these Aab is considered as a sign of the onset of autoim-
munity and with the detection of multiple Aab progression to clinical T1D is highly 
likely. To date, the appearance of Aab and severity of hyperglycemia serve as a 
measure of the progression to T1D (Kimpimaki & Knip, 2001). The extent of hy-
perglycemia is usually addressed by estimating glycated hemoglobin (HbA1C), 
formed as result of the non-enzymatic reaction between glucose and hemoglobin 
and is used as a biomarker of long-term hyperglycemia. The discovery of HbA1C 
has lead diabetes research into the chemistry of glycation and its resultant products, 
i.e. advanced glycation end products and their associated complications in diabetes 
(The International Expert Committee, 2009; Schalkwijk & Miyata, 2012). How-
ever, monitoring of autoantibody status and HbA1C provide early indication of an 
individual’s susceptibility to T1D. 

The immune system mediates its function through circulating in the blood. Thus, 
any activation and/or disruption of the system are reflected in the balance of its 
circulating components. Blood is used for determining the transcripts and cellular 
profiles, and serum contains a plethora of proteins and metabolites (Chaussabel et 
al, 2010; Psychogios et al, 2011). The signature patterns of serum biomarkers 
could potentially be used to assist in the T1D prediction. The asymptomatic period 
from early infancy to the occurrence of T1D associated autoantibodies and finally 
to clinical T1D provides an opportunity for early disease prediction and diagnosis. 
Using such a strategy, longitudinal studies have collected samples from children 
at their birth, through subclinical stages until the onset of clinical T1D. The 
samples collected in prospective studies have included whole blood samples, blood 
serum or plasma, and stool samples (Hyöty, 2016; Van Belle et al, 2011a). 
Examples of such studies include the  BabyDiab study from Germany (Roll et al, 
1996), Diabetes Auto Immunity Study in the Young (DAISY) from USA (Rewers 
et al, 1996), the Finnish Diabetes Prediction and Prevention (DIPP) study (Kupila 
et al, 2001), Diabetes Prediction in Skåne (DIPIS) study from Sweden (Lernmark 
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et al, 2004). A multicenter study, which has involved sample collection from USA, 
Finland, Germany and Sweden, is The Environmental Determinants of Diabetes in 
the Young (TEDDY) (Krischer et al, 2007).  

The Diabetes Prediction and Prevention (DIPP) study was founded in the city of 
Turku in 1994 to prospectively collect blood samples from children’s with a ge-
netic risk for T1D. Newborn children are screened for T1D risk, and blood sample 
collection is scheduled from at-risk children for every 3 months up until the age of 
two, with the measurement of serum levels of ICA, IAA, GADA, and IA-2A as 
represented in Figure 6. If the levels of these Aab are above the expected thresh-
olds, sample collection is continued at three months intervals, otherwise every six 
months for Aab free children older than two years until the age of 15. The children 
are categorized based on diagnosis and autoantibody status as T1D subjects, auto-
antibody positive (Aab+ve) or autoantibody negative (Aab-ve). These longitudinal 
series thus represent the different clinical stages of children and have provided a 
unique biobank for the study of biochemical changes associated with the onset of 
T1D. Omics analyses of these samples have included proteomics (Moulder et al, 
2015), metabolomics (Orešič et al, 2008; Oresic et al, 2013), transcriptomics 
(Kallionpää et al, 2014; Elo et al, 2010) and metagenomics (Giongo et al, 2011) 
analyses. 

 
Figure 6. Schematic representation of the study design. Serum samples were collected 
from the HLA-conferred T1D susceptible children recruited in The Diabetes Prediction 
and Prevention (DIPP), followed by measurement of T1D specific autoantibodies (Aab). 
Based on Aab status the children’s were classified as Aab+ve and Aab-ve.  
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2.5.4 Proteomics of T1D: 

The sources of human sample materials that have been used in proteomics studies 
of T1D have included blood, serum, saliva, urine, and pancreatic tissue. The latter 
is only available from autopsies or from surgery, and thus scarce. 

2.5.4.1 The pancreatic islet proteome: 

Human pancreatic tissue samples are sometimes available from cadavers or from 
surgical interventions. In one of the early pancreatic proteomics studies, Hu et al. 
employed 2-DE and MALDI-TOF-MS to analyze the human pancreatic tissue 
samples and identified 302 proteins. The identified proteins, however,  were from 
both exocrine and endocrine regions of the pancreas (Hu et al, 2004). The prote-
ome of human islets was first studied by Ahmed et al. using 2-DE and MALDI-
TOF/TOF-MS, where they identified 66 proteins specific to islets (Ahmed et al, 
2005). In their gel-free approach, Metz et al. used 2D LC-MS/MS to characterize 
the proteome of islets obtained from a biobank and identified 3365 proteins (Metz 
et al, 2006). Recently, Burch and co-workers carried out proteomics analysis on 
human pancreatic tissue obtained from Network for Pancreatic Organ Donors with 
Diabetes (nPOD). They analyzed the human pancreatic tissue lysate from healthy 
controls, Aab+ve non-diabetic, T1D and T2D diagnosed samples using a Quadru-
pole-Orbitrap MS (Q Exactive MS) with label-free quantification approach. They 
identified a panel of proteins differentially regulated between diabetic and pre-di-
abetic conditions, that could be used to segregate T1D from T2D (Burch et al, 
2015). Liu et al. characterized the proteome of human pancreatic tissue samples 
from the nPOD biobank (T1D = 5 and healthy subjects = 5) and identified over 
5000 proteins. They used 10-plex TMT based approach and 2D LC-MS/MS with 
a Q Exactive MS. In their analysis, they observed a unique proteome profile rep-
resenting exocrine pancreas. The detected differences revealed enrichment of β 
cell destruction and T1D related pathological pathways, specifically related to cell 
apoptosis, immune response and viral infections (Liu et al, 2016a).  

2.5.4.2 Plasma and serum proteome: 

Purohit and co-workers compared the serum samples from T1D patients and Aab-
ve healthy controls using surface-enhanced laser desorption SELDI-TOF-MS. The 
samples were obtained from the participants recruited in the prospective assess-
ment in newborns for diabetes autoimmunity study (PANDA), with the mean sub-
ject age of 14.3 years. They performed multivariate analysis to identify the putative 
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T1D biomarkers and to assess the reproducibility of the SELDI technique, and 
found 146 peptide/protein peaks with a statistical difference between the two con-
ditions. However, due to the poor inter day reproducibility of the technique, poor 
reproducibility of the multivariate model and protein identification difficulty, they 
concluded that SELDI was not a suitable option for discovery and validation of 
biomarkers when small changes in proteomics patterns are expected (Purohit et al, 
2006). Albrethsen et al. also used a SELDI approach to profile 766 serum samples 
from T1D patients (n=270) collected from 15 countries at 18 different pediatric 
centers. The samples represented the period after T1D diagnosis, i.e. from 1, 6 and 
12 months and the mean age at diagnosis was 9.1 (± 3.7 years). They found that 
levels of two apolipoproteins (APOC1, APOC3) were increased with time after 
diagnosis in the T1D patients (Albrethsen et al, 2009a).  

Metz et al. carried out the first major serum proteomics study of T1D patients, 
analyzing samples from the Diabetes Antibody Standardization Program (DASP) 
using LC-MS/MS and the accurate mass and time tag (AMT) strategy (Zimmer et 
al, 2006). The AMT approach was developed to make efficient use of the MS1 
signal of peptides and record comprehensive chromatographic elution profiles with 
high mass accuracy instruments, whilst removing the constraints and limitation 
imposed from recording MS2 signals. A database of confidence peptide identifi-
cations is constructed from the LC-MS/MS analysis of related samples and then 
used to infer peptide identifications from the analysis of the samples by LC-MS 
(no MS/MS spectra are recorded) by matching the accurate mass and normalized 
elution time (NET) from the existing database (Pasa-Tolic et al, 2004). Utilizing 
this approach, they identified 5 candidate protein makers, however, due to the 
small sample size in the discovery phase and the lack of validation experiments, 
they concluded that the identified panel was not of predictive value for T1D (Metz 
et al, 2008).   

In a related follow-up study, Zhang et al. used an LC-MS/MS-based approach for 
10 sets of pooled controls vs. 10 pooled patient samples from DASP cohort (each 
pool = 5 individuals) and identified 24 proteins, that were differentially abundant 
between T1D patients and healthy controls. Further, they performed validation by 
targeted proteomics of this panel in an independent cohort (100 healthy subjects 
and 50 T1D patients) followed by blinded validation in additional serum samples 
(N=10 vs. 10). They found that two proteins, i.e. platelet basic protein and C1 in-
hibitor classified T1D patients from healthy controls with 100 % specificity and 
sensitivity. The predictive power of this pair was then further tested using serum 
samples from 50 age-matched T2D patients, in which C1 inhibitor especially clas-
sified the two classes of diabetes. Functional annotation suggested that the dysreg-
ulation in innate immune response could be associated with disease status (Zhang 
et al, 2013b). In order to achieve the deeper proteome coverage, their LC-MS/MS 
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analysis was based on the AMT method, for which they performed immunodeple-
tion of high abundant proteins of pooled serum samples and SCX fractionation.  

Zhi et al. used a spectral counting approach after 2D LCMS analysis of serum 
samples from three pooled controls vs. three pooled patient samples (each pool = 
10 subjects). Prior to MS analysis, they removed the high abundant serum proteins 
using a hexapeptide affinity resin and subsequently identified over 2500 serum 
proteins, of which 21 were differentially expressed between healthy and T1D sub-
jects. The differentially abundant panel were functionally related to autoimmunity, 
inflammation, metabolic regulation and oxidation. Immunoassays were used to 
validate these findings in 848 controls and 1139 T1D patients (Zhi et al, 2011a). 
The validation experiments confirmed the higher levels of adiponectin, insulin-
like growth factor binding protein 2, C-reactive protein, serum amyloid protein A 
and lower levels of transforming growth factor beta-induced, myeloperoxidase in 
the serum of T1D patients. When this result was compared with the results from 
Zhang et al., the overlap of biomarkers panel was marginal. 

In general, the earlier serum proteomics biomarker studies of T1D only compared 
the disease end points with control groups, i.e. the differences between patients 
with T1D and healthy controls, with less attention to prediabetic serum analysis. 
McGuire et al. the compared cord blood of children that later on developed T1D 
(54 cases and 108 controls). They used SELDI to profile the differences and clas-
sified T1D developing children, however, the identity of discriminating peak was 
not established (McGuire et al, 2010). 

In contrast to these comparisons of diabetics and non-diabetics, we have shown for 
the first time serum proteomics profile of pre-diabetic serum samples (266 samples 
from 19 case-control pairs) mapping the changes from early infancy, seroconver-
sion and diagnosis (Moulder et al, 2015). The serum samples were obtained from 
the DIPP project, including pre-diagnosis samples from T1D children (median age 
at diagnosis 4.1 ±2.9) and healthy controls matched by age, gender, risk group and 
geographic region. The quantitative profiles of immunodepleted serum samples 
were measured using LC-MS/MS with the comparison by iTRAQ labeling and a 
label-free approach. Consistent differences were found in several proteins, even 
before the appearance of routinely measured autoantibodies in the T1D developing 
progressors. The proteins APOC-IV and afamin gave a classification of the cases 
from controls with a high success rate (area under the curve = 0.85). Functionally, 
the panel of biomarkers suggests that dysregulated immune pathways, complement 
activation and lipid metabolism may be associated with T1D development. 

Recently, Toerne et al. studied the serum proteome of 15 children who progressed 
to T1D within 3.5 years, 15 children who progressed to T1D in 9.5 years or more 
and 15 Aab negative controls from the German T1D risk cohorts 
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(BABYDIAB/BABYDIET study). They used label-free LC-MS/MS and found 46 
proteins to be significantly different between islets Aab+ve and Aab-ve children. 
The significant hits were validated using SRM-MS in 140 samples (70 Aab+ve vs. 
70 Aab-ve) from the same cohorts. Amongst the distinct peptide signatures, 
apolipoprotein M and apolipoprotein C-IV enabled discrimination autoantibody 
positive from autoantibody negative children (von Toerne et al, 2017). Notably, 
the latter protein (APOC-IV), was differentially abundant, and in combination with 
afamin, able to segregate children developing T1D from healthy controls in our 
study (Moulder et al, 2015). In terms of function, Toerne et al. reported that the 
differences they observed could be associated with lipid metabolism and homeo-
stasis, proposing that lipid metabolism is altered in the early autoimmune process. 

In another recent publication, Liu and co-workers reported longitudinal profiles 
from the plasma proteome of 10 healthy children across 9 timepoints, covering the 
period from birth to adolescence (Age: from 9 months to 15 years). The plasma 
samples used in this study were collected as a part of DAISY cohort. The analytical 
strategy included depletion of the top 14 must abundant serum proteins, TMT la-
belling followed by basic pH reversed-phase fractionation and LC-MS/MS. They 
identified 1828 protein groups, and using statistical modeling categorized 1747 of 
the plasma protein groups into seven major longitudinal expression patterns, of 
which 970 proteins had age dependant changes in expression (Liu et al, 2016c). 
Several of these age related changes were verified by ELISA for certain proteins 
(e.g. IGF1, IGFBP2 and IGFBP3). In a subsequent publication they used the same 
proteomic approach to compare the temporal expression profile of 11 T1D patients 
over 9 serial time points with 10 matched healthy controls, samples covering the 
period from birth to onset of autoimmunity and overt T1D, and identified >2000 
proteins. After statistical modeling and correction for multiple hypotheses, 13 pro-
tein groups were found to be statistically significant between T1D and healthy sub-
jects. Notably, two proteins with a role in oxidative stress, i.e. catalase and super-
oxide dismutase, had aberrant expression even before seroconversion, and were 
verified by ELISA in the same samples.  

In addition to serum/plasma, saliva (Cabras et al, 2010b; Kuehl et al, 2015) and 
urine (Meier et al, 2005; Suh et al, 2015a) have been used to identify biomarkers 
of the T1D. The summary of protein biomarkers identified in proteomics analysis 
of tissues and biofluids in T1D research are presented in Table 2. There exist sim-
ilarities in potential markers between few studies, however, the overlap amongst 
the biofluids and tissue study was found to be none.  
  



Table 2: Summary of potential biomarkers identified in proteomics analysis of tissues and biofluids in T1D research. 
 

Specimen used Subject  
condition 

Method  
used 

Potential biomarkers  Reference 

Plasma T1D & ND  2DE-LC-MS/MS, AMT AZGP1, CLU, SERPINA6, LUM, 
TF 

(Metz et al, 2008) 

Serum  T1D  SELDI-TOF-MS APOC1, APOC3  (Albrethsen et al, 
2009b) 

Saliva T1D & ND  LC-MS/MS HST1, PRP1, STATH, S100A9 (Cabras et al, 2010a) 
Serum T1D & ND  2DE-LC-MS/MS, Spec-

tral counting, ELISA, Lu-
minex 

ADIPOQ, IGFBP2, SAA, CRP, 
MPO, TGFBI 

(Zhi et al, 2011b) 

Serum T1D & ND 2DE-MALDI-TOF-MS GDIβ (Massa et al, 2013) 
Serum T1D & ND LC-MS/MS, AMT, SRM C3, GSN, PGLYRP2, TTR, PPBP 

and SERPING1 
(Zhang et al, 2013a) 

Serum Pre-T1D, Aab+ve & ND LC-MS/MS, iTRAQ, 
LFQ 

APOC4, APOC2, AFAM, PFN1, 
MBL2, FHR5, CO9, BGH3, AD-
IPO, IGFBP2 

(Moulder et al, 2015) 

Pancreatic tissue T1D, Aab+ve, T2D & ND LC-MS/MS, LFQ OLFM4, ENPP1 and RegIIIα (Burch et al, 2015) 
Urine T1D & healthy siblings 2D-LC-MS/MS LAMP2, ENPEP, NAGA, 

MAN2B1, CTSC, GNS, OGN 
(Suh et al, 2015b) 

Pancreatic tissue T1D & ND LC-MS/MS CUL4A, HNRNPK, SPARCL1, 
TSPAN8 & UBE2F 

(Liu et al, 2016b) 

Serum Pre-T1D, Aab+ve & ND LC-MS/MS, LFQ, SRM APOC4, APOM, CFH, HGFAC, 
CP 

(von Toerne et al, 2017) 

Plasma Pre-T1D & ND LC-MS/MS, TMT CAT, SOD1 (Liu et al, 2017) 
 
Pre-T1D: pre-diabetic phase, ND:  non-diabetic samples
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2.6 An introduction to atherosclerosis:  

Atherosclerosis is one of the leading causes of death and disability worldwide 
(Murray & Lopez, 2013). It is an inflammatory disease of the large and medium-
sized arteries, that results in narrowing of the luminal wall or by thrombi occlusion, 
which leads to ischemia of the heart (coronary heart disease), brain (stroke) or 
lower extremities (peripheral vascular disease) (Bentzon et al, 2014; Libby et al, 
2002; Ross, 1999). The most common event out of these is the coronary heart dis-
ease, including myocardial infarction and stable angina as the fatal end points 
(Bentzon et al, 2014). The atherosclerotic process starts early in childhood and can 
remain symptomless for a long time, indicating that the beginning of the disease 
process to the occurrence of clinical events is because of a continuum of complex 
biological interactions (McGill H.C. et al, 2000). Epidemiological studies have 
uncovered important risk factors associated with atherosclerosis, such as smoking, 
hypertension, diabetes, obesity and dyslipidemia. These modifiable risk factors can 
be controlled, and treatment of these reduce the risk of cardiovascular risk. The 
non-modifiable risk factors include genetic predisposition, aging and gender 
(Bentzon et al, 2014; Vasan, 2006).  

2.6.1 The pathophysiology of atherosclerosis: 

A normal artery is made up of three layers (Figure 7). The tunica intima is the 
innermost layer and is composed of a single layer of endothelial cells towards the 
luminal side. It overlays the subendothelial space, which consists of elastic fibers 
sheets and extracellular connective tissue matrix (proteoglycans and collagen). The 
tunica media is the middle layer that separates from the intimal layer by the elastic 
lamina, composed of smooth muscle cells (SMCs) layers. The outermost layer, the 
adventitia, is made up of connective tissues with fibroblasts and SMCs interspersed 
(Lusis, 2000; Packard & Libby, 2007). 

The atherosclerotic process is characterized by selective retention of circulating 
apolipoprotein B particles in sub endothelial space by arterial wall proteoglycans 
and their subsequent modification (Williams & Tabas, 1998, 1995; Didangelos 
et al, 2012). However, the exact mechanism is not well understood and has been 
extensively studied in animals e.g. rodents and non-human primates (Lusis, 
2000). 
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Figure 7. Structural anatomy of a normal artery. This consists of three layers, the inner-
most is the intima layer, the middle one is the tunica media and the outer layer is the 
adventitia. The figure was adapted and modified from motifolio.com. 

It has been shown that the monolayer of endothelial cells of the intima can be 
damaged by modifiable risk factors, inducing the expressions of adhesion 
molecules like vascular adhesion molecule-1 (VCAM-1) and P-selectin, aiding 
monocytes to adhere to dysfunctional endothelium. The damaged endothelium 
allows the entry of LDL into the endothelial wall (Kriszbacher et al, 2005). The 
monocytes from the circulation follow this LDL, transmigrate into the inflamed 
endothelium and proliferate into macrophages, consume the LDL and form foam 
cells. Further amplification of inflammation occurs through secretion of tumor 
necrosis growth factor alpha (TNF-α) and interleukin-6. T cells secrete 
proinflammatory cytokines, such as interferon-γ (IFN-γ), CD40L and CD154, 
increasing the inflammatory response. The ligation of CD40 ligands induces the 
expression of metalloproteinases (MMPs), responsible for extracellular matrix 
degeneration (Packard & Libby, 2007; Blake & Ridker, 2002). Over time, the foam 
cells die and their lipid-filled contents contribute to the formation of lesions called 
fatty-streaks. These fatty streaks are thrombogenic (i.e. blood can clot on them). 
Platelets from the circulation then begin to accumulate over the damaged 
endothelium and release the platelet-derived growth factor (a regulator of smooth 
muscle cells growth). Thus, the released platelet-derived growth factor draws 
smooth muscle cells from the tunica media layer, which in turn migrate into the 
intimal layer and multiply to secrete collagen, proteoglycans and elastin fibrous 
cells to form an extracellular matrix wall called as fibrous cap. The fatty streak and 
fibrous cap together are described as a plaque. With time, the fibrous cap can crack 
and expose the underlying thrombogenic foam cells to the blood, leading to the 
formation of a clot in a partially occluded artery. This results in ischemia (reduced 
blood flow), leading to cell injury and death in the downstream areas relying on 
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the blood flow. If such an occlusion takes place in the coronary arteries, angina 
and myocardial infarction can occur. A seriously reduced flow to the internal 
carotid and middle cerebral artery can lead to stroke and cerebral atrophy 
respectively (Bentzon et al, 2014; Ramsey et al, 2010; Businaro et al, 2012; Shah, 
2007). The buildup of plaque also weakens the structure of the artery and results 
in aneurysms (abdominal aortic aneurysms) (Michel et al, 2011). Occasionally, 
from the main plaque deposit, some part can break and become an embolism that 
will drift through the blood stream until it lodged in smaller blood vessels or 
another artery where the atherosclerotic plaque is building up (Bentzon et al, 
2014).   

2.6.2 The need to identify novel risk factors: 

An inflammatory marker, C-reactive protein (CRP), is studied as an atherosclerotic 
risk marker, however, it is not particularly specific and has only a moderate pre-
dictive value (Danesh et al, 2004; Ridker, 2004). Furthermore,  a number of dif-
ferent inflammatory proteins have been previously studied as potential biomarkers 
of atherosclerosis, including CD40L (Heeschen et al, 2003), interleukin-6 (Ridker, 
2004), interleukin-18 (Ridker, 2004), monocyte chemoattractant protein 1 (MCP-
1) (De Lemos et al, 2003) and myeloperoxidase (Meuwese et al, 2007). Moreover, 
because of the genetic heterogeneity and complexity of the disease etiology, the 
usefulness of a single protein marker in prediction is limited. Several studies, have 
therefore investigated the utility of multimarker panels in disease prediction (Kullo 
& Cooper, 2010). Zethelius and co-workers revealed that a panel of four markers, 
CRP, cystatin C, troponin I and N-terminal pro-brain natriuretic peptide (NT-
proBNP), improved the area of receiver operating characteristics (ROC) curve (C-
statistics) analysis for predicting MI and death amongst elderly men during a me-
dian follow-up period of 10 years (Sundsten et al, 2008). Wang et al. assessed a 
panel of 10 biomarkers in more than 3000 subjects from the Framingham Offspring 
Study. The participants were followed for the development of cardiovascular dis-
eases with a median follow-up period of 7 years. They found that, out of 10 mark-
ers, the B-type natriuretic peptide was associated with the prediction of major car-
diovascular events and CRP along with homocysteine predicted mortality (Wang 
et al, 2006). Nevertheless, with this multimarker panel, the risk of prediction im-
proved, though C-statistics incremental was only modest (Kullo & Cooper, 2010) 

Whilst the established risk factors have been routinely used in the prognostics of 
cardiovascular events, it has been reported that 14.4% of events occur in asympto-
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matic individuals without any known risk factors (Canto et al, 2011). Thus, iden-
tification of novel non-established risk factors may help in the better prediction 
and management of cardiovascular diseases.  

2.6.3 Proteomics of atherosclerosis: 

Proteomics has made significant progress during the past several years in 
identifying new biomarkers and understanding cardiovascular disease 
mechanisms. The two main sources of biological samples that have been used to 
study the alteration in the proteome of atherosclerosis are tissues and blood 
(Mokou et al, 2017). The major findings of these studies are presented in the 
following sections.  

2.6.3.1 Tissue based proteomics studies:  

Tissue samples can be obtained by surgery from arterial, cardiac specimens and 
the tissue secretome. The latter involves resident cell isolation from surgically ob-
tained tissue, i.e. primary cell cultures. De Klejin and co-workers analyzed the 
proteome of carotid atherosclerotic plaques from participants of the AtheroExpress 
biobank, identifying osteopontin (OPN) as a potential plaque biomarker. 
Subsequently, OPN was validated in femoral plaque samples, indicating its speci-
ficity irrespective of plaque localization (De Kleijn et al, 2010). Hao et al. used 
electrostatic repulsion hydrophilic interaction chromatography (ERLIC)-MS (Q-
Exactive MS) to characterize two pooled human carotid atherosclerotic plaque 
samples (each pool N=19) and found 4702 proteins. Many low abundant proteins, 
such as TGF-β, interleukins and other growth factors, were identified. Functional 
annotation analysis of the differential abundant proteins revealed enrichment of 
the atherosclerotic signaling pathway, inhibition of MMPs and toll-like receptor 
signaling pathway (Hao et al, 2014). Because of the layered structure of the normal 
artery, the earlier studies involving proteomics analysis of intact atheromatous tis-
sue of arteries lacked the information from the intimal layer where atherosclerotic 
progression takes place. To circumvent this, de Cuesta et al. used laser capture 
microdissection to isolate the intimal layer of pre-atherosclerotic and 
atherosclerotic coronary arteries, then compared these using 2D-DIGE. They 
found 13 proteins to be differentially regulated, of which three proteins, annexin 
A4, myosin regulatory light 2 smooth muscle isoform and ferritin light chain, were 
novel and subsequently validated by immunohistochemistry (de la Cuesta et al, 
2011). As an alternative to tackling the complexity of whole tissue proteome, Roc-
chiccioli et al. investigated the secretome of carotid endarterectomy specimens of 
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14 patients. Using label-free LC-MS/MS they found 31 proteins to be differentially 
regulated, including extracellular and intracellular proteins. Using ELISA assays 
they further confirmed the higher concentration of Vitamin D-binding protein 
(GC) and Thrombospondin-1 (THBS1) in plasma samples (Rocchiccioli et al, 
2013). 

Even though the affected tissue may hold the relevant pathological information of 
the disease process enabling the identification of useful biomarkers, there are a 
number of potential difficulties associated with the analysis of tissue samples, 
which include their accessibility and inconvenience for routine diagnosis. Never-
theless, the results of tissue proteomics may allow hypotheses generation for bi-
omarkers in circulation, which could subsequently be tested (Good et al, 2007). 

2.6.3.2 Plasma and serum biomarkers: 

DeGraba et al. performed proteomics analysis of serum samples from 38 patients 
who had undergone endarterectomy (EA) and 40 matched controls in order to in-
vestigate the associated serum proteome signature. They carried out serum frac-
tionation using SAX and SELDI chip surfaces followed by MS analysis. These 
analyses, however, did not classify the asymptomatic from symptomatic EA pa-
tients. In the same study, they performed albumin depletion of 20 serum samples, 
followed by 2D-DIGE analysis and found a decreased abundance of alpha 1 an-
titrypsin, haptoglobin (HP), GC and increased levels of leucine-rich alpha 2 gly-
coprotein precursor (LRG) in the subset of symptomatic carotid atherosclerotic 
patients (DeGraba et al, 2011). Lepedda and co-workers purified plasma VLDL, 
LDL and HDL fractions from carotid atherosclerotic patients undergoing EA and 
compared this with the equivalent material from matched controls. Using 2-DE, 
and MALDI-TOF-MS for peptide mass fingerprinting analysis, they identified 23 
proteins, of which the increased expression of acute phase SAA was found in all 
of the EA lipoprotein fractions. Collectively the results depcited the potential role 
of SAA in inducing an inflammatory response in atherogenesis (Lepedda et al, 
2013). 

Kristensen et al. applied a discovery and verification proteomics pipeline to 120 
plasma samples obtained from four well-phenotyped patient groups (each group N 
= 30): 1] subjects with no cardiovascular symptoms and no coronary calcium, 2] 
subjects with no cardiovascular symptoms but having increased amount of coro-
nary calcium, 3] subjects that had undergone operation due to atherosclerosis and 
4] subjects with acute coronary syndrome (ACS). For the discovery phase experi-
ments, they performed immunodepletion (MARS-6), 4-plex iTRAQ labeling, TiO2 

affinity chromatography and hydrophilic interaction liquid chromatography 
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(HILIC) enrichment, identifying in total 721 proteins. From validations using SRM 
assay, they verified the differential abundance of vinculin (VCL) and known risk 
biomarkers of cardiovascular diseases, such as apo(a), serum amyloid protein 
(SAA), CRP and thrombospondin-4 (TSP-4) in the ACS group. The validations 
supported the increased expression pattern of apo(a), CRP and SAA from groups 
1 to 4. Furthermore, immunoassays provided additional verification of  the differ-
ences in the levels of apo(a) and CRP (Kristensen et al, 2014a).  

Recently, a novel targeted proteomics assay based on proximity extension prote-
omics chip was used to assess the levels of 82 proteins in plasma from the Pro-
spective Study of the Vasculature in Uppsala Seniors (PIVUS). This approach re-
vealed the associations of growth differentiation factor 15 (GDF-15), MMP-12, 
renin, growth hormone, osteoprotegerin, T-cell immunoglobulin and mucin do-
main (TIM-1) and tumor necrosis factor ligand superfamily member 14 
(TNFSF14) to plaque prevalence independently of each other and conventional 
cardiovascular risk factors (Lind et al, 2015).  

Using 2-DE and MALDI-TOF/TOF-MS, Han et al. performed serum proteomics 
of samples from patients with atherosclerotic CAD with their matched controls. 
The analysis revealed thirty-three differentially expressed proteins between ather-
osclerotic CAD and matched controls, including increased expression of cyclin-
dependent kinase 9 (CDK9). Validation using western and ELISA confirmed the 
increased expression of CDK9 in serum as well as in peripheral blood mononuclear 
cells samples. Furthermore, immunohistochemical staining also revealed an in-
creased expression of CDK9 in atherosclerotic plaque tissue sections. Taken to-
gether they found elevated levels of CDK9 in serum, monocytes and artery plaque 
samples indicating, it as a potential biomarker of atherosclerotic CAD (Han et al, 
2015).  

More recently, Lee and co-workers developed a novel approach by integrating 
plaque imaging, plaque and plasma proteomics to identify biomarkers of athero-
sclerotic plaque rupture using a human model of angioplasty induced plaque dis-
ruption. They identified 491 proteins, of which six proteins were found to be sig-
nificantly high after plaque disruption. Functional analysis revealed enrichment of 
liver X receptor (LXR)/retinoic X receptor (RXR) pathway, and specifically found 
lipopolysaccharide binding protein (LBP) as a biomarker of coronary artery 
plaques and plaque disruption (Lee et al, 2017). A summary of the key biomarkers 
identified in the proteomics analysis of tissue and biofluids obtained from athero-
sclerotic patients is represented in Table 3.     



Table 3. Key protein biomarkers identified in the biofluids and tissue based studies of atherosclerosis patients. 
Specimen used Subject  

condition 
Method  
used 

Potential biomarkers  Reference 

Carotid artery tissue Atherosclerotic patients 2DE-LC-MS/MS MPO, FGG, FGB (Hao et al, 2014) 

Coronary artery 
plaque 

Atherosclerotic & non-ather-
osclerotic 

2D-DIGE-MALDI-TOF-MS, 
IHC 

ANXA4, MYL9, FTL (de la Cuesta et al, 2011) 

Secretome  Carotid endarterectomy & 
controls 

LC-MS/MS, LFQ, ELISA THBS1, GC, VCL (Rocchiccioli et al, 2013) 

Serum Endarterectomy and controls SELDI-TOF-MS HP, GC, LRG (DeGraba et al, 2011) 

Plasma No calcification, calcifica-
tion, stable arterial disease & 
ACS 

2DE-LC-MS/MS, iTRAQ, 
SRM 

VCL, SAA, apo(a), 
CRP, TSP-4 

(Kristensen et al, 2014b) 

Plasma Carotid artery atherosclerosis Olink Proseek® Multiplex 
CVD I96×96 kit 

OR, TIM-1, GDF-15, 
MMP-12, TNFSF14 

(Lind et al, 2015) 

Serum, coronary ar-
tery plaque 

Atherosclerotic coronary ar-
tery disease & controls 

2DE-MALDI-TOF-MS, IHC, 
Western blotting 

CDK9 (Han et al, 2015) 
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Overall, whilst the above studies have targeted serum and tissue from diagnosed 
patients, there has not been to our knowledge, a published study representing the 
early phases of plaque presentation. In the past decades there have emerged an 
increasing numbers of prospective studies that have aimed to follow the individu-
als at risk from cardiovascular diseases. The Cardiovascular Risk in Young Finn 
Study (YFS), which started in 1980 was established to study the impact of child-
hood life style, biological and psychological measures upon cardiovascular risk 
throughout the individuals life span (Raiko et al, 2010). This cohort has been fol-
lowed up at 3 to 6 years intervals as shown in Figure 8. Ultrasonic assessment of 
carotid arteries to measure the thickness of intima-medial layer were started from 
the 2001 follow up and continued until the most recent follow-up in 2010-12 
(Tonstad et al, 1996). During each visit, venous non-fasting blood samples have 
been collected and separated serum were collected for storage at -700C. 

 
Figure 8. Study design of The Cardiovascular Risk in Young Finns Study. The arrow 
indicates that the time period from which the subset of serum samples were selected for 
quantitative MS study to identify biomarkers of premature carotid atherosclerotic pheno-
type (2007 follow-up). The selected samples were collected from the plaque developing 
subjects together with their matched controls (age, sex, body mass index and systolic 
blood pressure). Adapted and modified from (http://youngfinnsstudy.utu.fi/ 
studydesign.html) 
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3 AIMS OF THE STUDY 

The main aims of this thesis were to investigate differences in the serum proteomes 
and identify potential biomarkers to distinguish healthy and disease developing 
subjects from prospective cohorts, concerning T1D and carotid atherosclerosis. 
The work presented in this thesis have addressed two hypotheses. Firstly, whether 
changes associated with development of T1D can be detected by serum proteomics 
of longitudinally collected samples from disease developing subjects and carefully 
matched healthy controls. Secondly whether diagnostically useful serum proteins 
for carotid atherosclerosis can be detected using cross-sectional analysis of sam-
ples obtained from subjects with premature atherosclerotic phenotype and their 
matched healthy controls. Such findings could provide the basis for identifying 
potential biomarkers that may be useful for risk prediction and diagnosis. Further-
more, they could be useful in monitoring the disease activity and the effect of phar-
maceutical interventions 

The specific aims of this thesis were: 

1. Identification of serum protein biomarkers at different stages towards the 
development of T1D using quantitative proteomics (I) 

2. Identification of serum protein biomarkers for premature carotid atheroscle-
rosis utilizing label-free quantitative proteomics (II) 

3. Development of targeted proteomics pipeline to validate the identified se-
rum protein biomarkers from study I and II using selected reaction moni-
toring mass spectrometry (III) 
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4 MATERIALS AND METHODS 

4.1 Biobanks/Cohorts: 

All the data included in the original publications I and II have been acquired under 
the permission of the Ethical Committees of the University Hospital of Turku and 
a written informed consent according to the Declaration of Helsinki was obtained 
from all study subjects. 

4.1.1 The Diabetes Prediction and Prevention Project (DIPP): 

The samples used in the study I were collected as a part of the Finnish DIPP study 
(Kupila et al, 2001). In this study, children at risk of T1D have been selected on 
the basis of HLA genotype and followed longitudinally from birth. At each study 
visit, sera were separated from venous nonfasted blood samples and stored at -
700C. The levels of Aab specific for T1D (ICA, GADA, IA-2A and IAA) have 
been measured in the samples using immunofluorescence for ICA and 
radiobinding assay for the other antibodies (Kulmala et al, 1998).  

The proteomics analysis were carried out on serum samples from 19 children 
who progressed to T1D during the DIPP follow-up. The control samples were 
from children that remained Aab-ve and were matched with T1D samples on 
the basis of age, place of birth, gender and HLA genotype. Typically seven 
samples per case and seven samples per control were compared for each subject 
pair. All together proteomics measurements were performed on 266 serum sam-
ples.  

4.1.2 The Cardiovascular Risk in Young Finn Study (YFS): 

The samples used in study II were collected as a part of the YFS (Raiko et al, 
2010). The proteomics measurements were performed for serum samples from the 
2007 follow-up. These samples were selected on the basis of ultrasound examina-
tions of the carotid artery from participants in whom a distinct plaque was detected, 
and analyzed together with the equivalent samples from carefully matched controls 
(matched by age, sex, body mass index and systolic blood pressure; N = 43 vs. 43). 
The samples were prepared and subsequently analyzed using a label-free quantita-
tive proteomics approach.  
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4.2 Methods used in this study: 

For the studies presented in this thesis a number of preparative steps and methods 
were used to enable the proteomic characterization, subject classification and data 
interpretation. These are briefly discussed below. Further information is provided 
in the original publications. 

4.2.1 Immunodepletion of high abundant serum proteins: 

To increase the detection of a wider range of serum proteins, the highly abundant 
serum proteins were immunodepleted using commercially available immunoaffin-
ity columns. The following two columns types were used in the studies.  
 

 ProteomeLab IgY-12, 100 mm x 6.3 mm i.d. (Beckman Coulter):  
o Study I 

 
 Multiple Affinity Removal Human 14, 50 mm x 4.6 mm i.d. (MARS-14; 

Agilent): 
o Study I and II 

The depletion of serum samples was performed by LC using an Ultimate 3000 
System and a Hitachi L7100 system for the IgY-12 and MARS-14 columns, re-
spectively. The chromatographic peaks representing the flow through and bound 
fractions were monitored by UV absorption at =280 nm, and collected with an 
Advantech SF-2100W fraction collector (Advantec Inc., CA, USA). Since the data 
analysis was based on the use of temporal samples from age and gender-matched 
controls a single depletion system was used for the compared case and control 
samples. 

4.2.2 Buffer exchange and in-solution digestion: 

The immunodepleted serum samples were concentrated, denatured, reduced using 
tris 2-carboxyethyl phosphine (TCEP) followed by alkylation with methyl 
methanethiosulphate (MMTS) in dark at room temperature. Finally the samples 
were digested with trypsin for overnight at 370C.   
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4.2.3 Isobaric tag for relative and absolute quantification (iTRAQ) labeling 
and strong cation exchange chromatography (SCX): 

The digested samples were labeled with iTRAQ reagent (8-plex) according to 
manufacturer’s instructions (Applied Biosystems). The labeled peptides were 
combined, then vacuum concentrated to reduce the volume to 200-400 µl and sub-
jected to SCX fractionation prior to LC-MS/MS analysis.  

4.2.4 LC-MS/MS analysis: 

During the course of the studies two LC-MS/MS platforms were used for the anal-
ysis of the iTRAQ labeled samples: I) a QSTAR Elite time-of-flight MS (AB-
Sciex) coupled to Ultimate 3000 capillary LC, II) an Orbitrap Velos Pro Fourier 
transform MS (Thermo Fisher Scientific) coupled with an EASY-nLC II. The pep-
tides were first loaded on 2 cm trap column followed by separation on 15 cm long 
analytical column having an inner diameter of 75 µm. The packing material was 5 
µ magic C18-bonded silica material (200 Å). The elution was carried out with a 
flow rate of 300 nl/min using the binary gradient of acetonitrile and water with 0.2 
% formic acid. The tandem mass spectra for iTRAQ labeled samples were carried 
out using CID and HCD mode for QSTAR Elite and Orbitrap Velos respectively. 
The label-free data were acquired using only the Orbitrap Velos system in CID 
mode.  

4.2.5 Protein sequence database search: 

 Study I: 

The ProteinPilotTM software integrated with the Paragon identification algorithm 
(Shilov et al, 2007b) was used for the analysis of iTRAQ data. The spectra were 
searched against a Human UniProt database (release August 18th, 2011, 20245 
entries including 162 common non-human contaminants). The search criteria were 
specified as 8-plex iTRAQ mode, trypsin digestion and MMTS as a fixed modifi-
cation of cysteine. The QSTAR Elite MS data were analyzed directly using Pro-
teinPilotTM, however the Orbitrap Velos data were converted to mascot generic 
format using Proteome Discoverer version 1.3 (Thermo Scientific) and parsed to 
ensure use of the appropriate reported ion fragments (Rissanen et al, 2012). A false 
discovery rate (FDR) of 5% was applied at protein level identification using the 
PSEP functionality mode of ProteinPilot (Tang et al, 2008; Tambor et al, 2012). 
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Proteome Discoverer together with Mascot 2.1 (Matrix Science) was used as the 
search algorithm to analyze the LFQ data. The search parameters included fixed 
modification of cysteine residue using MMTS, variable methionine oxidation 
modification and N/Q demidation, using the aforementioned database.  
 

 Study II: 

The MS/MS raw files were searched against UniProt human isoform sequence da-
tabase (UniProt release, August 2017, entries = 42,210) using Andromeda search 
engine (Cox et al, 2011a) built-in MaxQuant software (Cox & Mann, 2008b). The 
search parameters allowed up to 2 missed tryptic cleavages, MMTS as a fixed 
modification, Methionine oxidation and N-acetylation as variable modifications. 
A FDR of 1% at peptide and protein levels were applied using forward and reverse 
search of protein sequence database. The functionality “match between runs” was 
enabled in order to transfer the identifications across the data files (Cox et al, 
2014). 

4.2.6 iTRAQ quantitative analysis (Study I): 

The iTRAQ ratios were calculated using ProteinPilotTM. For between pair compar-
isons the reported ion intensities were normalized to a pooled reference, whereas 
within-pair comparisons were evaluated as the ratio of the case to control intensi-
ties. 

4.2.7 Label-free quantification (Study I and II):  

 The mass spectrometry raw files were imported to Progenesis LC-MS v4.0 
(Nonlinear dynamics) (Fischer et al, 2012). The software uses feature de-
tection and multiple alignments of the ion intensities, facilitating the com-
parison of multiple mass spectrometry files. The normalization and inten-
sity based abundance calculation for each protein was performed using Pro-
genesis. The label-free intensity values of each protein were converted to 
median value across case-control pairs in order to facilitate the comparison 
with iTRAQ data and similarly protein abundance ratios (case/control) cal-
culated for the paired samples. The statistical analysis were carried out us-
ing R (R Development Core Team, 2011) and SPSS (IBM Corporation). 
The mass spectrometry proteomics raw data and/or peak lists have been 
deposited to the MassIVE. MSV000078748-65 (Study I).   
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 MaxQuant software was used for LFQ. It performs the peak detection and 
peptides scoring using a set of algorithms. It does the mass calibration and 
peptide searching against sequence database to identify proteins, performs 
the normalization and calculates protein intensity values. The mass spec-
trometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE (Vizcaíno et al, 2016) partner repository with 
the dataset identifier PXD008278 (Study II). 

The SRM verification data are available from the ProteomeXchange Con-
sortium via the PASSEL (Farrah et al, 2012) partner repository with dataset 
identifier PASS01146 (Study II). 

4.2.8 DIPP data analysis (Study I): 

 Comparison of temporal differences:  

A rank product-based method was used to evaluate temporal differences between 
the children compared from the T1D study. The data were selected and combined 
to make the following comparisons: 3 to 6 months before seroconversion, 9 to 12 
months before seroconversion, 3 to 6 months before diagnosis, 9 to 12 months 
before diagnosis and 15 to 18 months before diagnosis. This was applied to the 
log2 transformed protein relative abundance measurements at selected time inter-
vals, i.e. before and after seroconversion. For these the depletion targets were 
removed from the data matrix to limit the influence of their variations on the 
ranking.  

In addition to identifying the proteins that were differentially abundant in the 
study cohort, the longitudinal changes in the protein profiles were evaluated 
and overviewed in terms of how they correlated relative to seroconversion. For 
this comparison there were 11 progressors with at least two samples before and 
after seroconversion, and similarly from the age-matched controls. Spearman’s 
correlation coefficients were calculated for the case/control ratios and the case 
or control to reference ratios. To estimate the P-value the time axis was permu-
tated 10,000 times and an FDR <5% was considered significant (Benjamini-
Hochberg corrected). Using cut offs for the Spearman’s correlation coefficients 
of an absolute value of >0.4 and a FDR <5%, the enrichment of GO functions 
for the proteins satisfying these criteria were compared between the subject 
classes.  
 
 Changes in the complement proteins:  
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Frequently the differences were observed between the case and control subjects in 
the relative abundance of the complement proteins. Hierarchical clustering re-
vealed coordinated changes with this class of proteins. For the comparative analy-
sis of these changes, the Pearson’s correlation coefficients were determined for 
Complement component 5 (CO5) with the other proteins for each subject. The 
consistency of these correlations between subjects was assessed using rank product 
analyses of the correlation coefficients. CO5 was selected due to its central role in 
the formation of the membrane attack complex (MAC).   
 

 Classification Analysis: 

The top scoring pairs (TSP) method was applied to identify whether combinations 
of the quantified proteins could classify the samples and subjects (Xu et al, 2005; 
Geman et al, 2004). The analysis was used to determine the difference in protein 
abundance for the median normalized data at selected and/or averaged time peri-
ods. 

4.2.9 YFS data analysis (Study II): 

 Reproducibility optimized test statistics (ROTS) analysis:  

The proteinGroup.txt file, an output of MaxQuant was preprocessed using the Per-
seus computational pipeline (Tyanova et al, 2016). The processed data containing 
normalized protein abundance values were analyzed using ROTS (Elo et al, 2008; 
Suomi et al, 2017).  

 Machine learning analysis: 

To predict the protein panel with highest discriminative power, a machine learning 
analysis was performed. The feature selection from the serum proteomics data was 
based on Lasso regression (Tibshirani, 1996), using the R package glmnet 
(Friedman et al, 2010).   

 Targeted proteomics data analysis: 

The SRM data were analyzed using Skyline software (MacLean et al, 2010b), spe-
cifically for the inspection of transitions and peak areas. The MSStats package that 
can be implements through Skyline was used to perform the comparison between 
two groups (Choi et al, 2014).  
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4.2.10 Functional annotation analysis (Study I): 

The Database for Annotation, Visualization and Integrated Discovery (DAVID) 
tool (da et al, 2009) was used to perform the gene ontology and pathway analysis.  

4.3 Development of targeted proteomics pipeline: 

A number of differentially abundant serum proteins were detected in the study I  
(Moulder et al, 2015) and II (Bhosale et al, 2018). To facilitate the validation of 
these markers in a wider cohort, SRM mass spectrometry methods to assay these 
proteins in additional serum samples were developed.   

4.3.1 Selection of proteotypic peptides:  

About three to five proteotypic peptides (Mallick et al, 2007) per protein, rep-
resenting a panel of 41 and 10 proteins in the study I and II respectively were 
selected. This selection was based on the acquired discovery proteomics data 
and aided by the use of Skyline and comparisons with Peptidepicker and the 
SRM Atlas (Mohammed et al, 2014; MacLean et al, 2010a; Kusebauch et al, 
2016).  

4.3.2 LC-MS/MS and LC-MRM-MS analysis (Study I, II and III): 

Heavy-labelled synthetic equivalents of proteotypic peptides were obtained, 
pooled and a Q-Exactive MS (Thermo Fischer Scientific) was used to record HCD 
spectra to create spectral libraries. The pools were spiked with index retention time 
(iRT) peptides to establish retention time indices for the monitored peptides 
(Escher et al, 2012). Following the database search of the LC-MS/MS data from 
these pools, Skyline was used to establish suitable transitions for the selected re-
action monitoring (SRM) assays. Once the transition targets for the SRM assay 
were ascertained with the heavy-labeled synthetic analogs, an unscheduled run of 
serum/plasma samples spiked with iRT peptides was acquired using TSQ triple 
quadrupole MS (Thermo Fischer Scientific). The unscheduled run was then ana-
lyzed using Skyline to establish the actual retention time windows for the target 
peptides using their iRT values. Finally the scheduled run of serum/plasma was 
acquired for the samples including the spiked heavy counterparts of the target pep-
tides along with the iRT peptides.   
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4.3.3 Data analysis (Study I, II and III): 

Proteome Discoverer 1.4 was used to analyze the Q-Exactive MS data and targeted 
proteomics analysis was performed using Skyline. In particular, the MSStats pack-
age that is integrated into the Skyline software was used as a graphical interface to 
carry out the statistical analysis between healthy and diseased conditions.  

 



64 Results  

5 RESULTS 

5.1 T1D proteomics (Study I): 

5.1.1 Mass spectrometry analysis: 

Serum proteomics analysis were carried out on the samples collected as a part 
of DIPP cohort to identify early changes associated with T1D risk. LC-MS/MS 
was used to determine the serum proteomics profiles for 266 samples from 19 
case-control pairs, covering the prediabetic period and ranging from the age of 
3 months to 12 years. The samples were immunodepleted to remove the most 
abundant proteins. In the analysis of these longitudinal serum proteomes, two 
different MS-based quantitative strategies were applied to separate sample sets, 
i.e. iTRAQ, and label-free. Using the iTRAQ labeling based approach (13 case-
control pairs), 658 proteins were identified and quantified with ≥2 unique pep-
tides, whilst with the label-free approach 261 proteins were identified and quan-
tified using similar criteria (6 case-control pairs). The overlap between iTRAQ 
and label-free detections encompassed 248 proteins with two or more unique 
peptides.  

5.1.2 Serum proteome level differences between children who developed T1D 
and age-matched healthy controls: 

Decreased levels of APOC4 and APOC2 were found in the children that pro-
gressed to T1D when compared to their matched controls. Similarly lower levels 
of mannose binding protein C (MBL2) were indicated in the controls. The levels 
of two complement proteins, i.e. complement factor H-related protein 5 (FHR-5) 
and complement component 9 (CO9), were increased in abundance in subjects that 
developed T1D (Table 2, Study I).  

The lower levels of APOC4 and APOC2 were already apparent before seroconver-
sion in the T1D developing children. Additionally, on the basis of rank product 
analysis an increased abundance of profilin-1 (PFN1) was observed in the period 
of 3-6 months before seroconversion. Similarly, analysis on the period after the 
appearance of Aab indicated a lower abundance of adiponectin (ADIPO), perios-
tin, sex hormone-binding globulin and a higher abundance of dopamine β-hydrox-
ylase. (Table 2, Study I).  
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5.1.3 Serum proteome based classification of children progressing to T1D: 

The top-scoring pair (TSP) method classified T1D developing subjects with a 
success rate of 91% (Figure 9A). The segregation was based on the combina-
tion of two proteins i.e. APOC4 and afamin (AFAM), whose relative abun-
dances were lower and higher than control subjects respectively (Figure 9B). 
The evaluation of longitudinal data using TSP method in T1D developing chil-
dren’s revealed segregation of pre and post seroconversion samples with a suc-
cess rate of ~80%. This classification was based on the relative abundance of 
apolipoprotein A-IV and insulin-like growth factor-binding protein complex 
acid labile subunit.  

 
Figure 9: A) Classification of children who developed type 1 diabetes and age-matched 
control subjects based on the abundance of APOC4 and AFAM. The TSP method was 
used, yielding a 91% success rate. ▲, control subjects; □, case subjects (Adapted from 
Study I). B) Relative abundance measurements for APOC4 and AFAM for the case and 
controls subjects.  

5.1.4 Functional annotation analysis and hierarchical clustering: 

Functional enrichment analysis of the proteins that were positively correlated with 
age in the children who developed T1D, revealed statistically significant enrich-
ment of inflammation and immune response pathways. However, for a similar 
analysis of the negatively correlated proteins, there was not any functional enrich-
ment (Table 3 and 4, Study I).  

Enrichment analysis was also made on the clusters identified from the case-control 
paired data after hierarchical clustering. These analyses revealed enrichment of 
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acute inflammatory response, lipid and cholesterol transport, and innate and hu-
moral immunity pathway in children developing T1D, when compared to their 
matched controls. These clusters frequently indicated the contrasting behavior of 
the complement proteins (between cases and controls). As CO5 is a central com-
ponent in the membrane attack complex (MAC) formation, its correlation with the 
other quantified proteins was evaluated in the T1D developing children and in their 
matched controls. This analysis revealed a number of correlations with the other 
complement proteins (CO6, CO8A, CO8B, CO8G and CO9) with CO5 in addition 
to a number of contrasting behavior between the subject groups (Table 5, Study 
I).   

5.1.5 Comparison with the published serum proteomics T1D datasets: 

To gain an overview of these results in respect to related studies, the findings 
were compared with two previously published datasets concerning serum prote-
omics of T1D patients (Zhi et al, 2011a; Zhang et al, 2013b). The combined list 
included 38 proteins, 32 of which were detected in our results. The expression 
patterns determined from the serum proteomes of newly diagnosed T1D patients 
by Zhi et al. included a statistically significant increased abundance of ADIPO, 
C-reactive protein, insulin-like growth factor-binding protein 2 (IGFBP2) and 
serum amyloid protein A, and decreased abundances of myeloperoxidase and 
transforming growth factor beta-induced protein ig-H3 (BGH3) (Zhi et al, 
2011b). Comparatively, in our data lower abundances of both ADIPO and BGH3 
were observed in the children from 18 months prior to diagnosis, whereas both 
of these and IGFBP2 decreased with age in cases. When compared with the bi-
omarkers evaluated by Zhang et al. (Zhang et al, 2013b), we observed the 
increased abundance of β-ala-his dipeptidase (CNDP1) and glutathione peroxi-
dase 3 (GPX3) with age in both T1D developing and control subjects. An in-
creased abundance was also observed for clusterin (CLU) over time in the T1D 
developing subjects.  

5.2 Carotid atherosclerosis proteomics (Study II): 

5.2.1 Mass spectrometry analysis: 

To investigate the occurrence of moderately abundant serum proteome biomarkers 
of premature carotid atherosclerosis, samples were selected from participants re-
cruited in YFS cohort. The latter study has evaluated the influence of childhood 
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lifestyle, biological and psychological measures and their contribution to cardio-
vascular risk. The health status in the order of two thousand subjects have been 
longitudinally monitored over the past 30 years and evaluations intervals of 3-5 
years with serum collection, biochemical parameters measurement (Table 1, 
Study II) and ultrasound assessment of carotid arteries. Based on the ultrasound 
examination, serum samples were selected from the subjects who have developed 
premature atherosclerotic phenotype in carotid arteries (N = 43) and healthy con-
trols (N = 43) matched by age, gender, body mass index and systolic blood pres-
sure. To achieve the broader proteomic coverage, serum samples were immuno-
depleted to remove the high abundant serum proteins. A label-free quantitative 
proteomics analysis of 86 serum samples was performed in quadruplicates. Over-
all, 296 proteins were detected with ≥2 unique plus razor peptides. Out of these 
249 proteins with valid values in half of the dataset were considered for statistical 
analysis.  

5.2.2 Serum proteomics changes in premature carotid atherosclerotic pa-
tients: 

The normalized protein intensity values from label-free quantitative proteomics 
analysis were used as input for analysis by Reproducibility-Optimized Test Sta-
tistics (ROTS) (Elo et al, 2009; Suomi et al, 2017). The statistical analysis re-
vealed differences in the abundances of seven proteins (p < 0.05) in the plaque 
bearing subjects. The differential abundance of serum proteins in cases and con-
trols using ROTS analysis is shown in Table 4. The down-regulated proteins 
included Fibulin 1 proteoform C (FBLN1C), beta-ala-his-dipeptidase (CNDP1), 
cadherin-13 (CDH13), gelsolin (GSN) and 72 kDa type IV collagenase (MMP2), 
whilst apolipoprotein C-III (APOC3) and apolipoprotein E (APOE) were higher 
in their abundance. However with the correction for multiple hypothesis testing, 
only FBLN1C remained statistically significant amongst the differentially regu-
lated proteins. These proteins are highlighted in the volcano plot shown in Figure 
10.  

On the basis of the observed differential regulation of APOE and the reported as-
sociation of APOE4 with carotid atherosclerosis (Elosua et al, 2004; Granér et al, 
2008), we evaluated the genotype data but did not find any difference in the fre-
quency of distribution of its alleles (Supplementary Figure S2, Study II).  
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Table 4. Proteins observed to be differentially abundant between cases and their matched 
controls (N = 43 vs. 43). 

UniProt 
accession 
numbers 

Protein names No. of 
unique 
+ razor 
peptides 

Sequence 
coverage 
(%) 

Log2 
fold 
change 

p 
value  

FDR 

P23142-4 Fibulin-1 pro-
teoform C 

6 36.6 -0.27 0.004 0 

P02649 Apolipoprotein 
E 

34 80.1 0.22 0.01 NS 

P06396 Gelsolin 70 75.8 -0.13 0.03 NS 
P02656 Apolipoprotein 

C-III 
8 62.6 0.4  0.03 NS 

P08253 72 kDa type IV 
collagenase 

3 7.4 -0.35 0.04 NS 

P55290 Cadherin-13 5 9.3 -0.32 0.04 NS 
Q96KN2 Beta-Ala-His-di-

peptidase 
29 57.6 -0.19 0.04 NS 

FDR = 0 indicates a value < 0.0001, NS = not significant 
 

 
Figure 10. A volcano plot depicting the differential levels of serum protein in subjects 
who developed plaques and its respective controls. Each dot represents a protein.  
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5.2.3 Machine learning analysis: 

To establish whether there was a panel of proteins that could provide an optimal 
and statistically significant classification of the premature atherosclerotic patients 
from their matched controls, a machine learning approach was used. A panel of 
three serum proteins, FBLN1C, APOE and CDH13, was identified to give the best 
segregation of cases from controls. The area under the receiver operating charac-
teristics curve (AUROC) for FBLN1C alone was 0.67 (95% CI: 0.56-0.79). How-
ever, with the inclusion of APOE and CDH13, there was a statistical improvement 
in AUCROC to 0.79 (95% CI: 0.69-0.88, p = 0.03) (Figure 11).  

 
Figure 11. Receiver operator characteristics (ROC) curve analysis for P23142-4 (AUC = 
0.67) alone and for panel of P23142-4, P02649 and P55290 (AUC = 0.79).  

5.2.4 Targeted proteomics results: 

Synthetic peptides were obtained to verify the identity of peptides associated with 
the differentially abundant proteins. Due to unavailability of similar cohort for val-
idation, the SRM based MS assay was developed and subsequently applied to ver-
ify the results with the same samples, although prepared without immunodepletion 
of the most abundant proteins. For data normalization the assay included two 
housekeeping proteins (observed to show little variation in between the subjects in 
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our discovery phase proteomics data). Additionally, APOB, a known cardiovascu-
lar risk factor highlighted in the clinical data, and retention time standard peptides 
were measured (Table 3, Study II). This analysis confirmed the decreased abun-
dance of FBLN1C by a ratio of 0.85 (99% CI: 0.73-0.98; FDR < 0.05) in plaque 
developing subjects compared to controls (Figure 4; Study II). The differences 
determined for the other targets, however, were not significant. 

5.3 Targeted proteomics pipeline results: 

A panel of proteins was selected for SRM based validation with the inclusion of 
key components of the complement and lipid metabolism pathways, as well as 
several markers of inflammation. Heavy-labelled synthetic equivalents of proteo-
typic peptides were used to confirm the assigned identities of the peptides detected 
in discovery experiments. Using the combination of iRT peptides and heavy 
labeled synthetic peptides scheduled transitions were established for the measure-
ment of 41 and 10 proteins corresponding to study I and study II. To date we have 
evaluated 200 and 23 heavy-labeled synthetic peptides representing study I and II 
targets respectively, of which the utility of 90% peptides was confirmed using the 
SRM approach (Figure 12 and 13). 

 
Figure 12. LC-SRM-MS of Study I target proteins. The chromatogram represents 211 
peptides corresponding to 41 putative markers and iRT peptides that were detected and 
scheduled.  
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Figure 13. LC-SRM-MS of Study II target proteins. The chromatogram represents 33 
peptides corresponding to 10 putative markers and iRT peptides that were detected and 
scheduled.  

 



72 Discussion 

6 DISCUSSION 

6.1 T1D proteomics (Study I): 

Using quantitative proteomics technologies, the results from this study represented 
the first temporal study of pre-diabetic children to discover serum proteomics pat-
terns. Using samples from the Finnish DIPP study, comparisons were made be-
tween children who became Aab+ve and progressed to T1D, with matched healthy 
controls who remained Aab-ve. In terms of early biomarkers, the lower relative 
levels of APOC2 and APOC4 were detected even before seroconversion in the 
children’s progressed to T1D. In relation to current hypothesis, Laitinen et al. have 
presented data supporting the role of coxsackievirus B1 in the development of T1D 
(Laitinen et al, 2014), and lower levels of apolipoproteins have been associated 
with viral infections (Singh et al, 1999; Rowell et al, 2011). Based on the former, 
enterovirus data recorded in the DIPP study were evaluated for the subjects con-
sidered in our study. Amongst the 19 case-control participants from the present 
study, measurements had been made for neutralizing antibody data against cox-
sackievirus B1 in twelve subjects (eight progressors and four controls). The anti-
bodies against the virus were detected in six progressors out of eight, whereas the 
controls were all antibody negative. Analysis of additional samples with data on 
viral infections is needed to make further conclusions based on these initial obser-
vations.  

The decreased serum abundance of ADIPO was observed in children who were 
Aab+ve. Several studies have indicated the role of ADIPO in the regulation of fat 
metabolism and in insulin sensitivity in T1D patients (Zhi et al, 2011a; Pereira et 
al, 2012). We found an increased abundance of PFN1 prior to seroconversion and 
functionally it has been related to inflammation and resistance to insulin (Pae & 
Romeo, 2014).   

The differences detected in relation to the correlations of complement proteins 
were especially notable amongst the MAC components. Usually the components 
of the MAC circulate independently with a consecutive interaction between them 
resulting from complement activation where the end-point leads to destruction of 
bacteria and pathogens (Sodetz & Plumb, 2001). In addition to its protective role, 
the complement system has been implicated in the pathogenesis of several auto-
immune diseases including T1D (Chen et al, 2010). Hence, the observation of dif-
ferential levels of complement proteins in subjects en route to T1D may reflect 
various challenges in mediating immune response (Fink et al, 1992).  
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Whilst the levels of MBL2 were found to be variable within the subjects, in the 
T1D developing progressors levels were remarkably lower than in their matched 
controls. MBL2 is an important component of immune response and regulates ac-
tivation of the lectin complement pathway. The deficiency of MBL2 is linked to a 
genetic disorder leading to susceptibility to infection (Turner, 2003). However, the 
relative abundance of MBL2 did not reveal any strong correlation with any of the 
other quantified proteins. 

The analysis using a TSP method classified the children who progressed to T1D 
based on the relative abundance of APOC4 and AFAM with success rate of 91%. 
The latter protein plays a role in vitamin E transport and has been linked to secre-
tion of insulin in islet cells (Liu et al, 2012). Such associations with APOC4 have 
not been established. However, von Toerne et al. (von Toerne et al, 2016) also 
reported the lower abundance of a peptide from APOC4 and its potential utility in 
predicting the risk of clinical diabetes in children with multiple autoantibody pos-
itivity. Using samples from the BABYDIAB/BABYDIET cohort, they made 
measurements from 45 islet Aab+ve and negative children for the discovery phase 
and additional 140 children from the same cohort for validation experiments. Alt-
hough our study lacks the validation in a large independent cohort, the potential 
importance of our discovered marker (i.e. APOC4) was confirmed using targeted 
proteomics methods in a larger population outside of Finland (von Toerne et al, 
2016). However, another recent study by Liu et al. detected APOC4 but did not 
report any longitudinal behavior (Liu et al, 2017). In contrast to these recent pub-
lications (von Toerne et al, 2016; Liu et al, 2017), our study encompassed chil-
dren’s whose average seroconversion age were about 2 years. Such information is 
missing from the study by Liu et al. This is important factor shall be considered in 
the light of recent reports (Bjelosevic et al, 2017) and demonstrating temporal age-
associated changes in serum protein levels of young children (Lietzén et al, 2018) 
(see also below). 

Overall, our quantitative analyses were mostly limited to the comparison in the 
order of ~250 proteins. Whilst these mostly represent the moderately abundant se-
rum proteome, the belief of proteomics community is that the key markers for dis-
ease process may come from measurement of lower abundant proteins (Gerszten 
et al, 2011). Notably in the study of Liu et al. in which they compared plasma 
samples from children developing T1D and controls, using isotope labelling meth-
odology, and more advanced mass spectrometry instrumentation than was used 
than in our study, they were able to provide proteomic coverage of more than 2000 
proteins (Liu et al, 2017). Their application provides a useful overview of the cur-
rent capabilities of isobaric labelling for plasma proteomics. Also, preceding pub-
lication, they used the same approach to determine the temporal changes in the 
serum proteome of 10 control children’s from the DAISY study, between the ages 
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of 9 months to 15 years. Here they demonstrated consistent quantification for in 
the order of 1000 proteins and observed age dependent trends in the order of half 
of the detected proteins. Such temporal data is particularly useful when attempting 
to distinguish disease related changes from natural development (Liu et al, 2016c). 
However, a notable limitation with their data in relation to study of T1D was the 
lack of coverage of the early months and years of life. The earliest samples for 
each subject were from around age of nine months and then from the age of the 
two years. Data from the DIPP study, in particular, has shown that many children 
seroconvert to islet cell immunity before the age of 2 years. The recognition of 
changes during this period is therefore vital and for this reason in the DIPP study, 
seven temporal samples are often collected during first two years. Furthermore, 
the average age of seroconversion of the subjects in our study was 2.1 years. Sim-
ilarly, in studies from our group, proteomics characterization of the serum prote-
ome from control children (not developing T1D) from the DIABIMMUNE study 
have been made (Lietzén et al, 2018). The study included 103 longitudinal serum 
samples collected from 15 children’s between birth to the age of 3 years (including 
four samples before the age of 2 years and cord blood). These data have provided 
useful insights into the dynamics of changes of the serum proteome during these 
early and critical phases.   

The evidence of the markers highlighted in our study and subsequent work will 
required further investigation, which in turn, would benefit from the development 
of sampling, measurement and validation methods to permit investigation on a 
wider scale. For our validation studies, a targeted proteomics pipeline has been 
established (Study III) and we are now in the process of validating the putative 
biomarkers of T1D progression. Importantly the selectivity and sensitivity of the 
targeted approach enables greater throughput in analysis.  

6.2 Carotid atherosclerosis proteomics (Study II): 

The proteomics analysis were carried out on the serum samples from the subjects 
bearing premature carotid atherosclerotic plaques and their matched controls from 
the YFS cohort. Seven proteins i.e., APOE, APOC3, CNDP1, CDH13, FBLN1C, 
GSN and MMP2 found to be differentially abundant between cases and controls. 
Furthermore machine learning analysis predicted a panel of APOE, CDH13 and 
FBLN1C classified the cases from controls with high discriminative power (Fig-
ure 12).  

APOE is the surface component of VLDL and chylomicrons. Changes in the bio-
logical function of APOE by two common polymorphisms produces three alleles 
i.e. 2/3/4 encoding for APOE2, APOE3 and APOE4 respectively. In study II, 
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increased serum levels of APOE were found in the subjects with premature carotid 
atherosclerotic plaques. This increased expression could be due to the increased 
levels of VLDL and chylomicrons, which are proatherogenic in nature (Lada & 
Rudel, 2004; Carmena, 2004). Furthermore, APOE exhibits proinflammatory 
properties by binding to the plasma lipids and presenting them as antigens to the 
immune system, thereby inducing an inflammatory response (Van Den Elzen et al, 
2005). Thus, it could be hypothesized that the increased serum expression of 
APOE in cases associated with the atherosclerosis is mediated through interaction 
with lipids and by inflammation.  

The levels of CDH13 were found to be decreased in the plaque bearing subjects 
when compared to their matched controls. T-cadherin is an adiponectin receptor, 
expressed on endothelial and smooth muscle cells, which regulates circulating and 
tissue adiponectin levels. Earlier studies have indicated its role in inflammation, 
vascular wall remodeling and atherosclerosis (Ouchi et al, 2000; Kudrjashova et 
al, 2002). Pfaff et al. evaluated the association of plasma T-cadherin and risk of 
atherosclerosis. Using an ELISA assay, they found that the abundance of plasma 
T-cadherin was negatively correlated with the severity of atherosclerosis (Pfaff et 
al, 2015). This is consistent with the decreased abundance of CDH13 in our study.  

Fibulin is a common moderately abundant serum protein that can bind to ECM 
proteins, e.g. elastin and fibrinogen (Argraves et al, 1990). Alteration in the levels 
of FBLN1 have been linked with many diseases such as atherosclerosis, arterial 
stiffness, cardiovascular risk and type 2 diabetes (T2D). In the study of Kawata et 
al. reduced plasma levels of FBLN1 were found in patients with acute myocardial 
infarction and unstable angina (Kawata et al, 2001). Based on the latter findings, 
Argraves and coworkers examined the presence of FBLN1 in human carotid ath-
erosclerosis lesions and found deposition patterns of FBLN1, suggesting its role in 
the pathophysiology of the disease (Argraves et al, 2009). In the plasma of T2D 
patients both increased and decreased levels of FBLN1 have been reported. With 
these differences a notable distinction was that one of the group was recently di-
agnosed (lower levels) and the other with T2D (increased levels). (Laugesen et al, 
2013; Cangemi et al, 2011). Additionally, the lower levels of FBLN1 in recently 
diagnosed T2D was found to be linked with carotid-femoral stiffness (Laugesen et 
al, 2013). Based on this observation, Paapstel et al. examined the association of 
serum FBLN1 levels and arterial stiffness in atherosclerotic patients and found 
increased levels in the patients with established atherosclerosis (Paapstel et al, 
2016). Although, these studies present the contradictory findings about the serum 
levels of FBLN1, these represent different phases and types or combination of dis-
ease and the role of FBLN1 needs to be clearly established in early stages of plaque 
progression. Moreover, alternative splicing produces four FBLN1 proteoforms 
(Smith et al, 2013; Overgaard et al, 2015): A, B, C and D. Amongst these, 
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FBLN1C has been reported to be the predominant proteoform in plasma 
(Overgaard et al, 2015) and has been identified in the tissue secretome analysis of 
coronary arteries (de la Cuesta et al, 2012).  

With the limitation of this observed findings from our study, the speculation is that 
decrease in abundance of FBLN1C could represent a premature atherosclerotic 
phenotype, which could over the time become vulnerable to plaque development. 
Further, this could result from the structural differences in FBLN1C proteoforms 
potentially contributing to their interaction with ECM proteins. This in turn could 
subsequently lead to accumulation in arterial intima layers and thus be detected as 
decreased FBLN1C abundance in serum. 

To confirm the differential abundance of serum proteins from the discovery phase, 
SRM-MS approach was used. However, due to the lack of similar cohort, the tar-
geted proteomics analysis was carried out on the same samples, i.e. verification 
measurements on undepleted serum samples. The use of undepleted serum re-
moved any potential biases resulting from the depletion approach. The results 
demonstrated that the initial observation could be conferred with a different 
method of preparation and analysis. The success with these measurements was en-
abled by the specificity and sensitivity of SRM-MS method.  

These targeted measurements verified the lower abundance of FBLN1C in cases 
when compared to their matched controls. However the changes in other proteins 
were not confirmed, possibly reflecting their smaller quantitative differences and 
individual variability.  

Whilst the verifications supported the initial observation of statistically significant 
difference in the relative abundance of FBLN1C, targeted measurements in an in-
dependent cohort are needed to further support the results. Additional structural 
studies indicating how FBLN1C proteoforms interact with ECM proteins could 
help in the understanding their contribution in plaque formation.  

6.3 Targeted proteomics pipeline (Study III): 

A selected reaction monitoring mass spectrometry (SRM-MS) pipeline has been 
developed for validation experiments for studies I and II. As an alternative to tra-
ditionally used Western blotting and ELISA assays, there has been a growing trend 
toward using SRM-MS for validation of candidate proteins of interest discovered 
by proteomics. When compared to ELISA and Western blotting, SRM enables the 
simultaneous analysis of multiple proteins targets in a single analysis. Moreover, 
the quality of MS data is often better than in standard approaches, in the context 
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of assay results and performance characteristics (Picotti & Aebersold, 2012). We 
have already established a targeted MS pipeline for studies I and II as indicated in 
the above sections, which is also applied to other projects in our group to monitor 
multiple proteins in a single run. Moreover, in contrast to discovery proteomics 
where technical replicates are required due to the stochastic nature of the data ac-
quisition, in validation experiments, on account of sensitivity and selectivity, the 
time can be dedicated to the analysis of biological replicates. Moreover, the chro-
matographic time required to monitor a panel of a hundred or more peptides is 
somewhat less than that needed to detect the proteome using discovery phase ex-
periment. Targeted analysis can therefore be performed with a much higher 
throughput. 

The developed workflow is now adopted to validate the discovery phase findings 
of study I and II.  
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7 CONCLUSIONS AND FUTURE PROSPEC-
TIVES:  

The data presented in this thesis include the first reported serum proteomics pro-
files of children en-route to T1D, covering the period before autoantibody positiv-
ity to the development of clinical disease. In particular some of these changes were 
detected even before the appearance of autoantibodies, which could, with further 
evaluation, provide potential insights to the pathogenesis of T1D.  

Nevertheless the distinguishing signatures detected in T1D developing children 
need further confirmation in a larger cohort. To facilitate the interpretation of such 
data, characterization of age related temporal changes in healthy subjects as well 
as the influence of diet and population with wider genetic variability should be 
established. Such studies will have a huge impact on the disease driven proteomics 
biomarker identification. Research towards these goals could proceed with mass 
spectrometry based technology, as increasingly better methods and instruments are 
producing more data at a greater speed. However, the serum proteome remains 
complex and challenging due to the inherent range of protein abundance and sub-
ject heterogeneity. Furthermore, although proteomics is usually achieved by ana-
lyzing digested proteins, the results are generally wrapped up to represent a single 
protein. In this manner important information about PTM, splice variants and pro-
teoforms remains hidden. For instance, glycosylation, a common PTM that occurs 
in approximately 50% of the eukaryotic proteins (Apweiler et al, 1999) is also 
detected in majority of plasma proteins. It will be also important to study low stoi-
chiometry PTMs such as non-enzymatic glycation, which is of particular interest 
from the view point of long term glycemic index in diabetes (Kulkarni et al, 2013). 
Detection of such aberrant of PTMs in disease states is an important future line of 
research. 

Similarly, using MS-based proteomics of serum samples obtained from the YFS 
cohort, distinguishing profiles were identified in the subjects bearing premature 
atherosclerotic plaques when compared to their matched controls. Furthermore, 
using targeted proteomics, the lower differential abundance of one of the proteins 
was verified. In addition to the validation experiments, potentially important focus 
of future study would be to confirm if the structural differences in FBLN1C might 
influence its association with ECM proteins. 

In summary, the serum proteomics analysis of two inflammatory diseases revealed 
characteristic patterns in the disease developing subjects. Importantly, the changes 
in these diseases were identified at subclinical stages of the disease revealing the 
potential of mass spectrometry based serum proteomics in biomarker discovery. 
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Such early markers could be helpful in prevention and diagnosis of the disease as 
well as monitoring the effect of pharmaceutical intervention. 

The work presented in this thesis has focused on the use of data dependent mass 
spectrometry (DDA) based analysis of the serum proteomes. In relationship to our 
own data and much of the published literature (Moulder et al, 2017a) many studies 
of serum have been limited to the consistent comparison of a few hundred proteins. 
With the increasing performance of targeted methods, such as SRM or PRM, it is 
becoming possible to achieve confident detection and quantification of panels in 
the order of hundred or more proteins. Such methods represent a useful hypothesis 
driven alternative to discovery experiments. The detection of lower abundance 
proteins still remains a challenge for SRM, although using anti-peptide antibodies 
as with SISCAPA (Stable Isotope Standards and Capture by Anti-Peptide Anti-
bodies) method have a great potential in mining the low abundant proteome 
(Anderson et al, 2004). Beyond DDA, data independent acquisition analysis of 
proteomes adds the benefit of recording the fragmentation patterns of almost all of 
the ionized peptides in the accessible mass range. This in turn may have potential 
in identifying the hidden proteome in unbiased and reproducible way. These and 
other current efforts, together with continued developments in MS based technol-
ogies, have indicated that the knowledge extracted through serum proteomics 
could help in predicting the personalized and public proteomic portrait. 

Whilst mass spectrometry based proteomics is a useful discovery tool, in the clinic, 
selected markers would be preferably detected with a simple assay such as ELISA. 
Due to the inherent complexity of mass spectrometry and the necessary sample 
preparation work flows, for the use of proteomics in the clinic will likely be limited 
to specialized centers. In terms of alternatives approaches for protein characteriza-
tion in biological fluids, antibody arrays have been developed targeting up to over 
9000 proteins. These represent an interesting approach, particularly in respect to 
their simplicity and low sample requirement, although are limited by the specific-
ity of the antibodies. Additionally, use of aptamer based assays, using DNA like 
amplification strategies for protein detection have shown significant promise in 
mining the depth of plasma proteome. 

By nature, disease driven studies are difficult and require multidisciplinary team 
of experts with medical, computational and statistical background. Research sci-
entists, clinicians, pharmaceutical industry experts and policymakers should care-
fully consider all above factors while debating further directions in developing 
clinical practices and personalized medicine. 
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